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1    Introduction 

Let XW(N) be the curve over C parameterizing elliptic curves together with a basis for their 
iV-torsion that maps to some specified iV'th root of unity under the Weil pairing.1 It is 
Galois over the curve XW{1) with Galois group SL2(Z/iVZ)/{±l}. Let SL2(Z/iVZ) act on 
the product surface XW(N) x XW(N) via the diagonal action; we can then form the quotient 
surface, which we shall denote by X~ti(N). More generally, if e is an element of (Z/iVZ)* 
and if SL2(Z/iVZ) acts on the first factor via the natural action but on the second factor 
via the automorphism 

„    fa   b\       fa    e~1b 

then we denote the quotient surface by X~,e(N). And we set 

X^(N) =      ]l     X^(N). 
ee(z/Nzy 

These surfaces can also be constructed in another fashion, as degenerate Hubert modular 
surfaces: let Sj be the upper half plane, with T(l) = SL2(Z) acting on it via fractional linear 

'This curve is traditionally denoted by X(N); however, we have chosen to use the notation X(N) to 
denote the (geometrically reducible) curve coming from the adelic mod N principal congruence subgroup, 
and have changed all notation accordingly. 

M&mm$&&; 



transformations. Then T(l) x T(l) acts on S) x S): if we denote by T~e{N) the subgroup of 
r(l) x r(l) given by 

ax    =    o2 (mod N), 

O] h\   (a2    b2\\ 

dy)'\c2     do)) 

61    =    tb-2 (mod N), 

C\ eci    =    c-2 (mod N), 
/ 

di    =   d2 (mod N) 

then the quotient r~£(iV)\f) x f) is an open subset of X~it{N), and if we denote by Sj* the 
space fiUP1 (Q) then r~£(iV)\i)* x ff is all of A'~e(JV). 

The surface X~ £(A") (or, more properly, the open subset given by using f) x S) instead of 
ft* x S)*) is a coarse moduli space for triples (£1, £2,0) where the Efs are elliptic curves and 
(f> is an isomorphism from E\[N] to E2[iV] such that A2(f> raises the Weil pairing to the em- 
power. The modular parameterization is given as follows: let (TI,T2) E S) x f) and let E{ be 
the elliptic curve given by the lattice with basis {I^T,}. Also, let e be an integer that reduces 
to e mod N. We then have the map <j> from E\[N] to E2[N] that sends n/iV to er2/N and 
1/iV to 1/iV; it raises the Weil pairing to the e'th power, the group of elements of T(l) x T(l) 
that preserve <f> is the subgroup Y~)€{N) defined above, and every triple (Ei,E2,4>) arises in 
this fashion. 

Using this modular interpretation of these surfaces, we can think of them as Hilbert 
modular surfaces corresponding to the order (Z x Z)=(/v) of conductor N in Z x Z, defined 
as 

(Z x Z)=(iV) = {{a,b) eZxZ\a = b    (mod N)}. 

Let (£1, Eo, q>) be a point on A~,e(A
r). If we let H be the subgroup of {Ex xE2)[N] consisting 

of all points of the form (x, 4>{x)) then E\ x E2/H has real multiplication by (Z x Z)=(/V). 
This curve has a natural principal polarization iff e = -1 (c.f. Frey and Kani [3]): if A 
is an abelian variety and if is a subgroup of A[N] then {A/H)v is isomorphic to Ay/Hv, 
where Hv C .4V[JV] is the set of points orthogonal to H under the Weil pairing, and in 
the case at hand we have H = Hy iff e = -1. We shall see other reasons below why the 
surface X~-i{N) is the most important of the X~,£(iV)'s to study; see Sections 5 and 6 in 
particular. 

The above gives a construction for the surfaces A~ e(./V) over C; since the moduli problem 
makes sense over Q, there should be a construction of A~ £(iV) over Q as well. It is given as 
follows: let X{N) be the moduli space of pairs (E, <j>) where E is an elliptic curve and (f> is an 
isomorphism of group schemes from E[N) to Z/iVZ x Z/NZ. This curve is defined over Q, 
it is Galois over A(l) with Galois group GL2(Z/iVZ)/{±l}, and all of those automorphisms 
are defined over Q. Thus, the surface GL2(Z/NZ)\X{N) x X[N) is defined over Q, where 
GL2(Z/iVZ) acts via the diagonal action, and it is a moduli space for triples (E\,E2,<ß) as 
above but without any condition on what <f> does to the Weil pairing. This surface (which is 
our X~{N)) isn't connected, however: there is a map from it to Aut(/zp) = {Z/NZ)* which 
sends {Ei,E2,4>) to the e such that <f> raises the Weil pairing to the e'th power. The fibre of 
that map over e is then X~je(N), and it is defined over Q. 



The structure of the X~,,e(iV)'s as complex surfaces has been studied by Hermann in [7] 
and by Kani and Schanz in [8]; our X~)£(AT) is Hermann's YNt-\ and Kani and Schanz's 
ZJV€-I.

2
 In particular. Kani and Schanz give explicit formulas and tables computing various 

invariants of the X^,€(iV)'s. such as the dimensions of various cohomology groups. They 
also give explicit minimal desingularizations of the surfaces. 

The goal of this paper is to study spaces of modular forms on the surfaces X~{N) and 
X~,t{N), and the interplay between the spaces on the various surfaces. In many ways, 
X~(N) turns out to be the most natural object to study: to prove results on the .X~!£(iV)'s, 
one has to pass via X~(N), using the surface X~t-\(N) as a linchpin. In particular, we study 
how the X~ie(N)'s differ as e varies; one might naively expect them all to be isomorphic, 
but it turns out that X~tfL(N) and X~,ei(N) are isomorphic in general only if e and e' 
differ by a square. The surface X~t-\(N) is somehow the most important of the surface» 
X~t6(N); we characterize the difference between spaces of modular forms on it and spaces of 
modular forms on the other X~;e(iV)'s in terms of forms with complex multiplication. We 
also consider the case where N is prime and show that various simplifications occur there, 
allowing us to give a complete determination of the CM-forms that arise; we end by giving 
numerical examples of such forms. 

While the study of the surfaces X~.e(iV) is interesting in its own right, they can also 
be seen as a first step towards exploring the wealth of level structures that should occur on 
higher-dimensional Hubert modular varieties that don't have analogues on modular curves. 
In particular, if if is a real quadratic extension of Q and if p is a prime in Q that splits in 
K then we have level structures on the Hilbert modular surface associated to K that are 
completely analogous to the .X~i(=(p) level structures; to the extent that the calculations in 
this paper are local, they should carry over to that situation as well. 

I would like to thank Fred Diamond, Jordan Ellenberg, Steven Kleiman, and Barry 
Mazur for the help that they have given me while writing this: and the M.I.T. Department 
of Mathematics and the N.D.S.E.G. Fellowship Program for the support that they have 
provided. 

2    Spaces of Modular Forms 

Let f: $) x Sj ^ C be a, holomorphic function; let 7 = (71,72) be an element of GL^~(R) x 
GL^R), where GLt(R) is the set of elements of GL2(R) with positive determinant; and 
let k = {k\,k2) be a pair of natural numbers. We define the function f\kn: 5) x S) —>• C by 

/Ik,7(*i>*2) = /(7l(2i),72^2))i(7i^i)~fcl;(72^2)"fc2 

where, if a = (° ^) is an element of GL^R), then a(z) = (az + b)/(cz + d) and 

j(a, z) - (ad - bc)~ll2(cz + d). 

2We replaced their e by e   ] to simplify the normalizations given in Section 7; since X~,e (N) and X~>c-i (N) 
are isomorphic, this is an unimportant change. 



We write /|7 instead of f\k.~, if k is clear from context. 
Defining T(l) to be SL2(Z), we say that a subgroup T of T(l) x T(l) is a congruence 

subgroup if it contains the group TW(N) x TW{N) for some N. where TW(N) is defined to 
be the set of matrices in SL2(Z) that are congruent to the identity mod N. A function 
f:f)xf)-+C\s& modular form for T of weight k if /|fc.7 = / for all 7 G F and if / is 
holomorphic at the cusps. To explain this latter condition, assume that TW(N) x TW(N) C 
T. Then f{zx + N,z2) = f(zX:z2) for all {zuz2) G f) x iy. so setting qx = e2*^2'/^', we 
can write 

f{z\,z2) = ^2 cm(f){z2)q 
mez 

for some functions Cm{f). licm(f) is zero for all m < 0 and if a similar condition holds if we 
do a Fourier expansion in z2. we say that / is holomorphic at infinity. And / is holomorphic 
at all of the cusps if, for all 7 G T(l) x T(l), f\k,7js holomorphic at infinity. 

A modular form is a cusp form if it vanishes at all of the cusps; that is to say, if whenever 
we take a Fourier expansion of /|fc,7 in either variable as above, co(/) is zero. We denote 
the space of all modular forms of weight k for T by Mk(T)\ we denote the space of all cusp 
forms by Sk(T). 

The space M(felifc2)(r~ et;V)) is zero unless k[ - k2 is even: this follows from the fact that 

((V-UU^j^r^iV). 
If T = Ti x T2, with each I\ a congruence subgroup of T(l). then there is a natural map 

from Mfel(ri) ® Mk,{T2) to M{klM){Ti x T2) which sends fx S f2 to the function 

{zi.z2) ^ fi{zi)f2{z2). 

Furthermore, this map sends cusp forms to cusp forms. It is in fact an isomorphism in either 
the modular form or cusp form case: 

Proposition 2.1. If S is a subset off)* or Jrj* x >V and F is a congruence subgroup ofT(l) 
or r(l) x r(l), let Mk{T.S) be the set of forms in Mki£) that vanish on the points in S. 
Then for any congruence subgroups Ti and T2 of T(l) and subsets S\ and S2 of Sy*, the 
natural map 

Mkl(rl,sl) ® A/fc2(r2,s2) -»■ M(fcljit2)(r1 x r2.(s, x f,*) u (V x s2)) 

is an isomorphism. 

Proof. We prove the Proposition by induction on the dimension of Mkl {T\,S\). Set S = 
(Si x ft*) U {Sj* x 52), and assume that dimM^Cr^Si) is zero. Let / be an element of 
M(kuk2){Ti x T2,5). For any z2 €f)*, the functions M- f[z,z2) is an element of Mkl{Ti,Si), 
which is therefore zero, so / is the zero function. 

Now assume that dimMfcl(ri, 5i) is positive, and let z[ be an element of ff such that, 
setting Si = SiU{zi}; 

dimMfcl(ri,5i) = dimMfcl(r1.5i)-l. 



Let S' — (S[ x fj*) U (ff x S2): we will construct a commutative diagram 

0  ► Mkl{Ti,S[)SMk2(r2,S2)  ► Affcl(ri,5i)®Mk2(r2)S2)  ► Mk2{T2,S2)  ► 0 

0  ►      M,i1,i2)(r,xr3.S')        ►       M{klM){TixT2,S)        > MH{T2,S2) >0 

with exact rows. This will prove our Proposition: the left vertical arrow is an isomorphism, 
by induction, and the right vertical arrow also is, so the middle vertical arrow is one as well. 

The left horizontal arrows are the obvious injections. The right arrow on the top row 
sends f\ <g> fi to f\{z'l)f2'- the definition of S[ and the choice of z[ shows that this makes the 
top row exact. 

Similarly, we define the right arrow on the bottom row by having it send / to the function 
sending z to f(z[,z), which is in Mk2(T2, S2). This map is surjective: if We pick a function 
/{ € Mkl(Ti,Si) such that f[(z) = 1 then we can get a splitting for this map by sending J2 
to the image of /{ ® $2 under the middle verticäf arrow. The exactness of the bottom row 
then follows immediately from the definitions. □ 

Corollary 2.2.  Given any natural numbers k\, &2, and N, we have isomorphisms 

M{klM){I^{N)) = (Mkl(rw(N))®Mk2(Tw(N))fL^z/XZ} 

and 

S{kuk2)(T^(N)) = (Skl(Tw(N)) ® Sk2(Tw(N)))Sh^NZ\ 

where SL2(Z/iVZ) acts on the first member of the tensor product in the natural fashion and 
on the second member via the automorphism 6t. 

Proof. By the Proposition. 

M{klM)(TlL.(N) x TW(N)) = (Mkl(rw(N)) ® Mk2(Tw(N))); 

that SL2(Z/iVZ)-invariants correspond to forms in M(fcl>fe2)(r~ e(iV)) follows from the defi- 
nitions. The cusp form case is similar, setting Si and S2 in the Proposition to be equal to 
PX(Q)- ü 

This allows us to express the dimension of the space S(2]2)(r~,e(-^r)) in terms of data 
given in Kani and Schanz [8]: 

Corollary 2.3. The dimensions of the spaces S(2;2)(r~ ^iV)) and H2(X^e(N),Ox~e(N)) 
are equal, and they are also equal to the geometric genus of a desingularization of X~e(JV). 

:ä' 



Proof. We have the equalities 

dimS(2i2)(r~£(JV)) = dim(S2(Xw(N)) ® S2(XW(N)))SL^N^ 

= dhMHHXAN).0XAX])®HHXAN).0Xu.{X)))
SL^NZ) 

= d\mH2(Xw(N) x Xw{N),0XxX)SL2{Z/NZ) 

= d\mH2(SLo(Z/NZ)\(Xw(N) x XU.(N)),OSL2\X-XX) 

= dimH2(.Y^,(A0.OA.,(,v)) 

by the fact that S2{XW{N)) is dual to Hl{Xw{N), 0Xw{N)), the Künneth formula, and Kani 
and Schanz [9], Proposition 2.7 (which allows us to translate between invariants under a 
group and quotients by that group). The fact that this is equal to the geometric genus is 
part of Kani and Schanz [9]. Proposition 3.1. D 

Of course, this isn't too surprising: weight 2 cusp forms should correspond to holomorphic 
2-forms. 

If / is a modular form on r~ £(JV), it has a Fourier expansion 

/(z,.z2) =     £     cmum2(f)qTlgT2 

where q{ = e
27r^z;/A\ There is one thing that we can say immediately about the Fourier 

coefficients cmum2{f): 

Proposition 2.4. For all f G M{kl.k2){F~AN)). the Fourier coefficient cm,,m,(/) is zero 
unless em\ + m2 = 0 (mod .V). 

Proof. Let e be an integer congruent to e mod N and let 

' (\    e\   (\    f ' 

Then 

o irvo i..er-W 

=     Y^    Cm     ,(/)e
27r^/-Tmi(zl+e)/yve27rv/ZrTm2(z2+1)/iV 

mi ,m2>0 
EC / \e2-V-lm^i/A'   2,TV/=n"m222/A'p2-x/^T(mie+m2)/iV 

Cml,m2\J )e e e 

mi,rTi2>0 

= E cm„m2(/)9ri92
ra2cie+m2 

mi,m2>0 

where O = e27rx/=T/A'. But this implies that 

Cmi.mjv/j = cm\,m.2\J lsX i 

so cmi,m2(/) is zero unless em! + m2 = 0 (mod iV). D 



Thus, most of the Fourier coefficients are "missing". This turns out to make it natural 
to also study modular forms on the surface X~(iV), even when we are only interested in one 
of the individual X~>e(iV)'s; we shall elaborate on this theme in Section 5. 

One way to produce forms on X~,e(iV) is to consider forms on X~,e(N/d) to be forms 
on X~i£(JV), for d a divisor of N. Such forms have Fourier coefficients cmi,m2 equal to zero 
unless d divides m\ (and hence 7712, by Proposition 2.4). The converse is also true: 

Theorem 2.5. Let f be a modular form of weight k on r~i£(iV), and assume that, for some 
d\N, we have cmi>m2(/) = 0 unless d\m\.  Then f is an element of Mk(r~.£(N/d)). 

Proof. The fact that cmiim2(f) — 0 unless d\m\ is equivalent to having / be invariant under 

Thus, we have to show that the smallest subgroup T containing both N * N£d ), (0 1)) and 

r~,e(iV) is r~>£(iV/d). Furthermore, we can take the quotient by TW(N) x TW(N), and thus 
consider all matrices to be elements of SL2(Z/iVZ). If 7 = (71,72) is an element of T then 

7 = (71 -9-\^l),i)- (e-1 (72), 72) 

which expresses 7 as an element of(Gx{(J^)})- T~t€(N), where 

G = {7i-ör1(72~1) 1(71,72) er}, 

and conversely any element of (G x {(J ?)}) ■ r~.£(./v") is also an element of F. But for that 
to be a subgroup of SL2(Z/7VZ) x SLo(Z/NZ), it is necessary for G to be a normal subgroup 
of SL2(Z/iVZ).  Thus, we have to show that the smallest normal subgroup of SL2(Z/iVZ) 

containing the matrix r^/d = ( 1: ' |d ) is the kernel of the natural map from SL^Z/ATZ) 

to SL2(Z/(Ar/<i)Z). Furthermore, we can assume that d is a prime p, and by the Chinese 
remainder theorem we can assume that N = pl for some /. 

First, assume that ! = 1, so we want to show that the smallest normal subgroup G 
of SLi2(Z/pZ) containing T\ — {\\) is the entire group. We first look at the image of 
G in PSL2(Z/pZ). If p > 3 then this latter group is simple, so the image of G is all of 
PSL.2(Z/pZ). If p = 3 then this latter group is isomorphic to A4 and T\ is an element of 
order 3; but since the only proper normal subgroups of A4 contain only elements of order 
1 and 2, we again have that the image of G is all of PSL,2(3). Similarly, if p = 2, then 
PSL.2(Z/2Z) is isomorphic to i>3 and T\ has order 2, so again our image must be all of 
PSL2(Z/2Z). 

This implies that G must either be all of SLi2(Z/pZ) or a subgroup of index two which 
projects onto all of PSL2(Z/pZ). But if p = 2 then SL2(Z/2Z) = PSL2(Z/2Z) so we're 
done; if p = 3 then SL2(Z/3Z) has only two non-trivial one-dimensional representations, 
whose kernels are of index 3; and if p > 3 then SL2(Z/pZ) has no non-trivial one-dimensional 

9 



representations, so again has no subgroups of index 2. (See Fulton and Harris [4], Section 5.2 
for the facts about PSL2(Z/pZ) and SL2(Z/pZ) used here.) 

Finally, assume that I > 1, and that we have a normal subgroup G containing r?, where 
q - p'-1. Note that q2 is zero in Z/p'Z. which greatly simplifies calculations. We then 

have to show that G contains all matrices of the form ( l+c*
q ^dq\ with determinant 1; this 

condition on the determinant is equivalent to having a equal to —d in Z/pZ. 
First, we have all of the powers of rq, so we have the matrices ( Q 

e') for a11 e- Conjugating 

by (? "Q
1
)' 

we als0 liave tlie matrices (A l) for a11 /' and multiplying those together, we 

have the matrices ( ,  eq J. 

On the other hand, conjugating Tq by (\ a\l), we see that for any a we have a matrix 

(X~/q l+a   )   for SOme 6''C'-    But n0W if We haVe any matrix   f1^' 1-aq)   that We Wish t0" 

show is in G, it is enough to show that (1+
c°

q ^J (l~,aq
q x^) is in G; and that matrix is 

of the form ( } e? ], hence in G by the previous paragraph. D 

We hope that the following stronger result is true: 

Guess 2.6. Let f be a modular form on r~i£(jY) such that cmum2(f) = 0 unless {rrii,N) > 
1. Then f can be written as a sum of modular forms fj on r~,E(iV/pj) where the pj's are 
the prime divisors of N. Furthermore, if f is a cusp form then the fj can be chosen to be 
cusp forms. 

Of course. Theorem 2.5 implies Guess 2.6 for N a prime power. They are both analogous 
to results proved as parts of Atkin-Lehner theory on the curves Xi(N). (See Lang [10], 
Chapter VIII, in particular Theorem 3.1.) While we don't yet know how much of Atkin- 
Lehner theory on Xy (N) carries over to the surfaces X~,e{N). not all of it does: in particular, 
while there are operators 

t,:5Jt(r1(M))-^5,(r1(Ar)) 

for each d\N/M, there is in some sense only one natural way to produce a form on X~>e(N) 
from a form on X~ e(M) for M\N. We shall give a precise statement and proof of this as 
Proposition 7.2. 

We let Sfc(r~ £(iV)) be the quotient of Sk{T~,e{N)) by the subgroup of forms / whose 
Fourier coefficients cmi,m2{f) are zer0 unless (rrii,N) > 1. In the X\{N) case, this would 
have the effect of replacing Sk{Ti(N)) by a space with the same Hecke eigenspaces but where 
each eigenspace is one-dimensional, generated by the newform in that eigenspace: we shall 
see in Theorem 5.6 that Hecke eigenspaces in 5jt(r~i£(iV)) are also one-dimensional. Finally, 
we let 

fe(z/Arz)- 
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and we let 

Sk~(N) =      II     Sk(T^(N)). 
£6(Z/iVZ)- 

Note that in the definitions of 5/c(r~,£(iV)) and Sk~{N) it's enough to assume that the 
Fourier coefficients are zero unless (mi, AT) > 1 (or unless (m,2,N) > 1), by Proposition 2.4. 

Proposition 2.7.  The spaces 5(2,2)(r~.e(p)) anc^ 5(2,2)(r~,e(p)) are equal, as are the spaces 

5(2,2),~(p)  and 5(2,2),~(P)- 

Proof. We have to show that if / is an element of 5(2,2) (r~,e(p)) such that cmi,m2(/) = 0 
unless p|mi then / is zero. Theorem 2.5 implies that such an / is in fact a form on r~)£(l)^ 
By Corollary 2.2, / can be considered to be an element of 52(r(l))®52(r(i)). But 52(r(l)) 
is zero, so / is zero. _ □ 

Proposition 2.8. If p is a prime then 

dimS*(r~e(p')) = ^dimS,^.^')). 
3=0 

Proof. This follows immediately from Theorem 2.5. 

Guess 2.6 would imply a similar statement for forms of arbitrary level. 

D 

3    Hecke Operators on X~ e(iV) 

Set 

A^(iV) = { 'ai    b{\   /a2    h ^ 
,ci    dW' \c2    d2. 

ai,bi.Ci,di e Z. 
aidi - biCi > 0, 
(a,idi -biCi,N) = 1, 

a\    =   0,2 (mod N), 
b\    =   eb2 (mod N), 

eci    =   C2 (mod N), 
di    =   d2 (mod N) 

We can partition A^e(iV) into double r~e(iV)-cosets; each double coset is called a Hecke 
operator. They act on the spaces of modular forms as follows: 

Let 7 = (71,72) be an element of AL e(N), and let 

11 
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be a decomposition of the double coset generated by 7 into left cosets. Then for a form / 
inM(fca.,)(r~.f(iV)), we define 

/l(^,).r=,(.v>-r,,((,v) = detfri)'*^-1 det^**'2'-1 £/|(fcllfca),7,. 
i 

We see as in Shimura [14]. Chapter 3, that f\(ki.h>.r~.c(Xhr~.c(X) is an element of the space 
M(fclifc2)(r~f(JV)). that cusp forms are transformed into cusp forms, and that the product 
of two Hecke operators is a sum of Hecke operators. 

Let Tnii„2 be the operator given by the sum of the double cosets containing elements 
(71,72) where det(7j) = n*. This is zero unless ni = n2 (mod N) and {rii,N) = 1. Left 
coset representatives for it are given as follows: 

Proposition 3.1. Let {ri\,ri2) be a -pair of positive integers that are congruent mod N and 
that are relatively prime to N. The set of elements of Al_c(N) that have determinant (ni,n2) 
then has the following left coset decomposition: 

11 «H: T)-'-{ 
a 1.02>0 

0<bi<di 

01   b\N\  _   (a-2   hN^ 
0     d2 . 

where, for a G (Z/NZ)*, aa is any matrix in T(l) that is congruent to (aQ
l °) mod N. 

Proof. First, note that the above cosets do indeed occur in T„,.n2. Thus, we have to see that 
the representation is disjoint and that it gives us all of Tn]M.2. To lighten notation in the 
proof, we use the following convention: whenever we use an expression of the form (£i)i=i.2> 
we mean a pair of expressions (x\.X2). 

To see disjointness (as left T(l) x T(l)-cosets. hence as left r~,e(7V)-cosets). assume that 

For this to be the case, we need the matrices 

fai   b{N\(a\   b\N\X     , 
,0     di)\0     d'J      < 

to be elements of T(l), which is true if and only if the matrices 

a;    biN^fa';   b[N 
0      di )\0     d'i 

are. But that product is equal to 

1_/M;.    NW, - aft 
n,- \ 0 a'(di 
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Since a$i = a\d\ — n,. and al,a'i > 0, the fact that the diagonal terms are integral forces 
ai — a\ and dj. = d\. But then we need n* to divide Nai(bi — 6'j); since [N,rii) — 1, this is 
equivalent to having cf,|62 — b[, which forces bi = b\ by our hypotheses on b{ and b\. Thus, 
the given cosets are indeed all disjoint from one another. 

Now we have to show that they cover all of Tnijri2. So let (^1,^2) be an element of 
A^£(iV) with determinant (ni,n2). By Shimura [14], Proposition 3.36, we can multiply 8\ 

on the left by an element of T(l) to get it into the form f "Q
1
 d

l J, with a\ > 0, a\d\ = n\, 

and 0 < b\ < d\. Subsequently multiplying it on the left by an element of the form (of) 

will put it into the form I a
0' 

bl
d
N J, but possibly with a different b\. (We can still force 61 to 

be in the range 0 < 61 < d\, however.) And since aai is an element of T(l), we have shown 

that there is an element 71 of T(l) such that 71 Si is of the form oai ( 
aJ b

dfj- 

We can choose an element 72 of T(l) such that (71,72) is in r~tt(N): reduce 71 mod N, 
apply 9e to it, and lift it back to T(l).  Multiplying [61,62) on the left by (71,72), we can 

thus assume that S\ is of the form aai ( *Q 
bl

d
N ). But then the congruence relations force 62 

to be congruent to the matrix 

I    °WJ    °)     (modiV). 
0   n\)       \0   n2J 

Now that we have fixed 61 to be of the correct form, we still have to force 62 to be of 
the correct form, and we are only allowed to multiply 62 on the left by elements of TW[N). 

Thus, we need to find an element 72 of TW[N) such that 7^2 is of the form aa., ( a
0

2 b
d
N J. 

However, 62 is in what Shimura calls A' (see Shimura [14], p. 68), so we can indeed find 
such a 72 by Proposition 3.36 of Shimura [14]. D 

From now on we follow the notational convention used in the above proof: whenever we 
use an expression of the form [xi)i=\t2, for any expressions x,, we mean a pair of expressions 
[x\,X2). In particular, i will only be used to refer to an element of the set {1,2}. 

The action of the Hecke operators Tnij7l2 descends to the spaces 5jfc(r~)e(iV)): 

Proposition 3.2. /// is a form in Sk[T~ie[N)) such that cmi,m2[f) = 0 unless [N,rrii) > 1 
then Tnitn2f has the same property for all n\ = ri2 (mod N). 

Proof. For d\N, define the operator id by 

id(f)=     £    Cm^f^q?*. 
mi,m.2>0 
d\m\,m2 

We then have the alternative definition of id as 

idtf) d   ^        ((10\   (lNe/d\ 
0<e<d     Ivoi^'^o     1    / 
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since 

d    I*.   f\((l0)   (lXe/d\\-d     ^     C™(/)<?1    C 

= 5 E ^1,ra2(/)gri<?r^v/rTm2e/rf 

e,mi,m: 

= *<*(/)• 

(Note that if d|m2 then also ri|mi, by Proposition 2.4.)   By the principle of inclusion and 
exclusion, the statement that cmurri2{f) = 0 unless {N,mi) > 1 is equivalent to having 

p\N P1.P2JJV 
Pl<P2 -..- 

and we want to show that if that is the case for / then it is also the case for Tnun2f. It is 
therefore enough to show that Tnun2 commutes with any id- But 

(I    cN/d\^    fa>    b>N 

is congruent to 

0       1    Jaa2\0      d2 

a2    b2N\ f\    en2Njd 
0     d2 ) vo        1 

mod N, so by Proposition 3.1. commuting with Tnu,l2 simply permutes the e's that occur 
in our alternate definition of id- ^ 

Proposition 3.2 would be an easy corollary to Guess 2.6. 

Proposition 3.3. For all (6ud2) G At,e(W), the double cosets r~e(JV)(äi,<J2)r~e(W) and 
r~te(N){6\,62)T~>e(N) are equal, where 

a   bY _ ( d     -b 
c   dj        \—c     a 

Proof. We need to find matrices (71,72) and (71,72) in r~)£(iV) such that 

(71^1,72^2) = (<Jhi,*272)- 

Since <5i and S\ have the same elementary divisors, we can choose a 71 and j[ that give us 
equality on the first coordinate. Now pick 72 and j'2 such that (71.72) and (7i,72) are in 
r~,e(iV). Then 72r)2 = ^72 (mod N). But by Shimura [14], Lemma 3.29(1), we can then 
change 72 and 72 by elements of TW(N) so that 72(^2 = #>72: as desired. D 
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We can define a Petersson inner product on the space of weight (k\, k2) 
CUSP forms just 

as in the one-variable case: 

</,<?) = / /(^)5Myi1_2y22-2 dx! dx2 dVl dy2 

(where Z{ — x\ + \f—\.yi)\ then just as in Shimura [14], Formula (3.4.5), we see that the 
Hecke operators T~ £(iV)(£i,<)2)r~ e(iV) and r~e(iV)(<^,<$£)r~e(iV) are adjoint with respect 
to that inner product. Thus: 

Corollary 3.4. The Z-algebra generated by the Hecke operators is a commutative alge- 
bra; the Hecke operators are self-adjoint with respect to the Petersson inner product on 
Sfc(r~i£(iV)) and simultaneously diagonalizable. ' 

Proof. The self-adjointness follows from Proposition 3.3 by the above discussion; the commu- 
tativity follows from Proposition 3.3 and Shimurafl4], Proposition 3.8, and the simultaneous 
diagonalizability follows from the self-adjointness. " D 

The effect of Hecke operators on Fourier expansions is given as follows: 

Proposition 3.5. Let f be an element of M^uk2)(T^e(N)); if a is an element of (Z/NZ)*, 
tet f\(      n OU have the Fourier expansion 

^ ' mi,m2>0 

// we set 

Tnun2f(zi-Z2)=     2^    dmitmiq™lq. 
mi ,m2>0 

rri2 

then the c/mi>m2 's are given by 

dmum2 —       2_^      a\       a2       c(ai/a2),mini/af:m2n2/a|- 
ai,a2>0 

o,|(m,-.n,) 

Proof. Let fa = f',      /1 o\\- F°r anY ^1,02 £ (Z/NZ)*, we have 
[aa,\o 1)) 

/lK-^)=/lK/a2,(J1))- 
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Thus, vising Proposition 3.1. we have: 

ai.a2>0       l°a.- V 0    rf; 
ayd,=n; 
0<b,<d, 

1 = 1.2 

A.-i/2-l    A--./2—1 
ll n2 /_,    Jaxiai\l l a. b.lX 

at-biJi I I  0    rf, 

= n'i""    """"'"    "    E    /a,/e2l//a. ft.A-^\ (-1'^) 

ETT  „ki-lj-ki   2-v'-lm,(a,--,+b,/V)/d, 
C(»./«2),mi.m2   11   Wj        di      e 

mi,m2>0 t=l,2 

C(ai/a2),mi,m2ll
nt       «i e 

a, ,dt,rrij,d, im, ' 

c(a1/a2),d,mi,d2m2llni       di e 

E„fci-1   fc2-l„ „mjai   m2a2 al        a2       c(ai/a2),dimi,d2m2yi        V2 
a,.rf, ,m, 

Comparing coefficients gives the desired result. d 

Note that the matrices (CT0, (Q ?)) don't normalize r~e(iV).   This is why we have to 
introduce the functions fa instead of simply diagonalizing Mk{T^,({N)). 

In particular, the following is true: 

Corollary 3.6. Let f 6 A'4-(r~ t(.V)) be a simultaneous eigenform for all of the Hecke 
operators.   Then if X„n.m,{f) is the eigenvalue for Tmi.m,, we have 

cm].m2(f) = Ami.m,(/)ci.i(/). 

D 

Unfortunately, this Corollary isn't quite as useful as one might hope, since the above 
coefficients are all zero by Proposition 2.4 unless e = -1! However, in that situation, we do 
get the following result: 

Corollary 3.7. // / and g are elements of Sk(T~-i{N)) that are eigen]'unctions for all 
Tnun2 's with the same eigenvalues then, considered as elements of Sk(T~-i[N)), they differ 
by a multiplicative constant. 

Proof. By Proposition 2.4 and Corollary 3.6, if c = clti(f)/ci,i{g) then cmum2(f - eg) is 
zero unless (m{,N) > 1. d 

This can be restated as follows: let Tfci£(iV) be the C-algebra of endomorphisms of 
5jt(r~ e(iV)) generated by the Hecke operators Tnii„2 for n\ = n2 (mod N). Then: 
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Proposition 3.8.  The space 5fc(r~,_i(iV)) is a free module of rank one over Th,-i{N). 

Proof. By Corollary 3.4. we can find a basis for SkO?~-i{N)) consisting of simultaneous 
eigenforms for all of the elements of Tfc.-i(iV). Furthermore, by Corollary 3.7, no two of 
those eigenforms have the same eigenvalues. This implies our Proposition. D 

Similarly, we define T*k e(JV) to be the C-algebra of endomorphisms of 5fc(r~)£(iV)) gen- 
erated by the Hecke operators Tni.n, for n\ — ni (mod N). Proposition 2.7 tells us that 
the spaces 5(2,2) (r~)£(p)) and 5(2.2:(r~,e(p)) are equal; thus, the above Proposition has the 
following Corollary: 

Corollary 3.9.  The space 5(2,2) (r~,-i(p)) is a free module of rank one over T%2^_ 1(p). 

With a little bit more care, we can use the above techniques to prove similar facts for 
e = —k2 instead of just e = —1. (This isn't too surprising, since X~-\(N) and X^^iN) 
are isomorphic.) They are in fact true for arbitrary«; the proof demands different techniques, 
and will be given as Theorem 5.6. It does seem, however, that X~t-i(N) is somehow the 
"dominant" X~,e(N); see Sections 5 and 6 for further discussion of this matter. 

Finally, we let T=(N) denote the free polynomial algebra over C with variables TnxM2 

for every pair ni,ri2 of positive integers that are relatively prime to N and congruent mod 
N. This algebra acts on the spaces Sk{T~.e(N)) and 5fc(r~,e(iV)) for all k and e; its image 
in the endomorphism rings of those spaces gives us the algebras T*k e(N) and Tfc,e(iV) that 
we defined above. 

4    Hecke Operators on X~(N) 

The Hecke operators TniM2 defined above have the following modular interpretation: let 
(E1.E2, <f>) be a point of X~_t(N). and let TT^ : E{ -> E[ be maps of elliptic curves of degree 
rii, where (rii,N) = 1. Then (p induces a map from E[[N] to E'2[N] which is an isomorphism 
of group schemes; T„1>n2 sends our point to the sum of all points (E[,E'2,<f)) that arise in 
such a fashion. Why, then, do we impose the restriction that ni be congruent to ni mod 
AT? The answer is that, if n: E —> E' is a map of degree n (with (n, N) = 1) then ■n doesn't 
preserve the Weil pairing: 

{■Kx,ixy) = (x,7rv7ry) 

= (x, [n]y) 

= {x,y)n- 

So if <f> raises the Weil pairing to the e'th power then, if we push it forward via maps of order 
rii as above, the resulting map raises the Weil pairing to the en2lri\ power. This explains 
why we had to assume that n\ = no (mod N) for the Hecke operators to act on the surfaces 
X~,e{N)- However, we should have Hecke operators Tni>n2 for arbitrary m with (rii,N) = 1 
which act on the surface X~(N). 

17 



The above considerations, when translated into matrices, lead us to the following defi- 
nition: for any e, e' in (Z/iVZ)*. set 

*UAN) = < 

a,j,bi,Ci,di G Z. 
a\di — biCi > 0, 

Cl 
bl) 

(a2    b2\\ 
\c2    d2)) 

{atdi - biCi,N) = 
Ol     =    o2 

61    =   e'62 

eci    =   c2 

edi    =   e'c^ 

= 1, 
(mod JV), 
(mod N), 
(mod iV), 
(mod iV) 

It is obvious from the definitions that A ̂ ,, = At ,= and one easily checks that 

A^ e ti ■ A_^ e/ f» C A^ e e». 

These facts imply in particular that At<e<e/ is invariant under multiplication by T~ £(iV) on 
the left and by F~it>{N) on the right; thus, At ££, can be partitioned into Hecke operators 
that send forms on -X"~ e(JV) to forms on X~te>{N). For any ni and n2 with (n*, JV) = 1 and 
with eni = e'n2 (mod JV), we define the Hecke operator Tni)„2 to be the sum of the double 
cosets r~ f(A

r)(7i,72)r~r'(Ar) occurring in At ( (. for which det(7,;) = n,:. This does depend 
on e. but it has a natural set of left coset representatives that is independent of e: 

Proposition 4.1. Let nj and n2 be positive integers that are relatively prime to N, and let 
e and e' be elements of (Z/iVZ)* such that m\ = e'n2 (mod N). Then the set of elements 
o/At    >(N) that have determinant {ni.no) has the following left coset decomposition: 

_,e,e 

U    IW.V) laai 
0.1 ,"2>0 

0<bi<d, 

0 
biN\        (ao   b2N^ 
d u*> 0      do 

where, for a 6 {Z/NZ)*, aa is any matrix that is congruent to (%' °) mod N. Furthermore, 
the above left cosets are also disjoint as T(l) x T(l) cosets. 

Proof. The proof is the same as the proof of Proposition 3.1. 

Recall that we defined 

D 

e€(Z/JVZ)- 

and made a similar definition for Sk~(N). Also, if f is an element of Sk ~{N), we write ff for 
its e:th component. We then define Hecke operators Tnun2 acting on the space Sk~{N) by 
setting (Tni,n2f)e = Tnii„2(f€n2/ni): Proposition 4.1 shows that that action "looks the same" 
for all e. The following Proposition shows that the action of these Hecke operators descends 
to the spaces Sfc(r~ £{N)), and hence allows us to similarly define an action of them on the 
space Sk~{N): 

18 



Proposition 4.2. /// is a form in 5fc(r~,e(iV)) such that cmum2(f) = 0 unless (N,rrii) > 1 
then TniM2f has the same property for all n\ relatively prime to N. 

Proof. The proof is the same as the proof of Proposition 3.2. D 

The action on Fourier expansions is also as expected from Proposition 3.5, with the same 
proof: 

Proposition 4.3. Let f be an element of M(kl_k^(r~}e(N)); if a is an element of(Z/NZ)*, 
kt f\(     (\Q\\ have the Fourier expansion 

If we set 

^ni,n2/(2;l)z2) —      2^/    •^m1,m29l X?2 2 

T7ll,m2^0 

then the rfmi,ra2 's 
are given by 

A —      V^        fci —l   ft2 —1„ 
«mi ,m2 —       2-~i 1 2       c(ai/a2),mirei/af,m2n2/a2' 

ai,O2>0 
ai\(mi,ni) 

D 

This Proposition (or Proposition 4.1, which it is a corollary of) allows us to translate 
theorems about forms on XW(N) into theorems about forms on X~(N): if / is a form 
on some X~.t(N) and we have a Hecke operator Tni)7l2, we can consider / to be form on 
A'u,(JV) x XW(N) and apply Tni x T„2 to it there. This gives us a form on XW(N) x XW(N); 
but by Proposition 4.1, that has the same effect as directly applying the TniyTl2 that we have 
defined above to / considered as a form on X~j£(iV), so our resulting form, which is a priori 
only a form on XW(N) x XW(N), is really a form on X^eni/n2(N). Thus, the fact that the 
Hecke operators Tn (with (n, N) = 1) on XW(N) commute implies that our Hecke operators 
Tm,n2 commute. Similarly, we can define a Petersson inner product on Sk~{N) by taking 
the orthogonal direct sum of the inner products on the 5fc(r~ie(iV))'s; our Hecke operators 
are then normal with respect to that inner product because the Hecke operators on XW(N) 
are. 

It is frequently useful to encapsulate this relation between forms on X~(N) and forms 
on XW{N) by defining a map H:Sk~(N) -^Skl{Tw{N)) ®Sk2(Tw(N)) which sends f € 
Sk,~(N) to Eee(z/Nzr fe- By Ski{Tw{N)) we mean Ski(Tw(N))/V where V is the space 
of forms / e Ski(Tw(N)) such that cm(f) = 0 unless (m, fcj) > 1; it is a module over the 
Hecke algebra generated by the operators Tn with (n,N) = 1, and its eigenspaces for that 
algebra are one-dimensional. The following two Propositions then sum up the discussion of 
the previous paragraph: 
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Proposition 4.4. The map from Sk~{N) to Skx{Tw(N)) ® Sk2{Tw{N)) that sends a form 
f to St(z(Z'vz)- *f commutes with the action of Hecke operators. It descends to an injection 

E: Sk~{N) -> ^(^.(A)) ® 5fc2(rtt.(iV)); i/f G S* ~(JV) tfien 

fe= £ cm,.m2(Sf)C92m2- 
mi ,77i2>0 

(mi +mo=0(mod Af) 
(m,,jV) = l 

Proo/. The only parts that, remain to be proved are that the last map is an injection and 
that fe can be recovered in the given manner. First, we note that, for all mi, m2 with 

(muN) = h 

cmi,m2("i) = /  y        Cmi,m2(tti). 

e€(Z/A'Z)' 

But Proposition 2.4 says that Cmum2{U) = 0 unless e = -m2/mi (mod N); Cmlim3(lX) 
therefore equals cT7ll,m2(f_m2/mi). This together with Proposition 2.4 immediately implies 
our formula for ff. And if Ef = 0 then this implies that, for all e and for all m, such 
that e = -m2/mi (mod A), cmi,m,(ff) is zero. But that implies that fe = Ü by using 
Proposition 2.4 again. D 

Proposition 4.5. The Z-algebra generated by the Hecke operators Tnum acting on Sk ~(N) 
is a commutative algebra; the Hecke operators are normal with respect to the Petersson inner 
product on Sk,~(N) and simultaneously diagonalizable. 

Proof. This follows from the above reduction of these facts to facts about forms on XW(N) 
and from Shimura [14]. Theorem 3.41. D 

Let f be an element of Sk~{N). and let mi and m2 be integers relatively prime to N. 
We define cmi>m2(/) to be equal to cmi,m2(f_m2/mi). We also make the same definition 

for f e Sk,~{N). If we set / = ££€(z/ArZ). U then / is a form on XW{N) x XW(N), and 
Cmltm2{{) = Cmum2(f), by Proposition 2.4, as noted in the proof of Proposition 4.4. 

Proposition 4.6. Let f be an element of Sk~{N); for a G (Z/ATZ)*, let fa be defined by 

&)< = Vaol(aai(iO))- 

Then for all n\, n2 with (n,, N) = 1 and for all mi, m2 with {mi, N) = 1, we have 

Cm\.m2\-'-ni,n2*) =       / y      
al        a2       cminila\,m.2n2la\ VJai /ao )■ 

ai,a2>0 
ai\(m,,n,) 

Proof. This is a corollary of Proposition 4.3. □ 
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We define T*(N) to be the free polynomial algebra over C with generators Tnii„2 for 
each pair n\, n^ of positive integers that are relatively prime to N. We define T£ (JV) to 

be its image in the endomorphism ring of Sk~{N); we define Tk~(N) to be its image in 
the endomorphism ring of Sk.~(N). 

Corollary 4.7. If f £ Sk.^{N) is a simultaneous eigenform for all Hecke operators Tni)„2 

in T£^(iV) with eigenvalues Anii7i2(f) then, for all mi and mi with (m,i,N) = 1, we have 

Thus, if f is a non-zero element of Sfc ~(iV) that is an eigenform for all,the Tnii„2's their 
ci5i(f) is also non-zero; we call such an f a normalized eigenform if c^^f) = 1. 

Corollary 4.8.  The space Sk,~(N) is a free module of rank one overTk,~(N). 

Proof. By Proposition 4.5, we can find a basis for Sk~(N) consisting of simultaneous eigen- 
forms for all elements of T^ ~(iV); the previous Corollary shows that the eigenspaces are 
one-dimensional, implying this Corollary. D 

Corollary 4.9.   The space 5(2,2) ~(p) l's a free module of rank one over T?22^ ^(p). 

Proof This follows from Corollary 4.8 and Proposition 2.7. D 

We should also mention a special class of operators that are contained in our Hecke 
algebras T*k ^(N). Given elements e and a of (Z/iVZ)*. we have 

(l.<Ta)-1r^AN)(l,<Ta)=T^a-U(N). 

The action of (l,<ra) therefore gives an isomorphism from 5jt(r~.e(iV)) to Sk(F~ta-2t(N)), 

denoted by (a). However, the action is the same if we multiply (1. cra) by (( Q ? )> ( o a))' but ^ 
we consider it as an operator on XW(N) x XW(N), as in the discussion before Proposition 4.4, 
then this, up to a constant, is the product of the identity with the Hecke operator T(a,a). 
By Shimura [14], Theorem 3.24(4), T(a,a) is in the Q-algebra generated by the T(n)'s, so 
(a) is in T*k„(N). Thus: 

Proposition 4.10. For all a E (Z/JVZ)*, the operator (a) given by the action of (l,crQ) 
is an isomorphism from Sk(T~e(N)) to Sk(T~a-2e(N)); furthermore, it is contained in 

As with the operators Tni)„2, (a) extends to the spaces 5fc ~(iV) and Sk,~(N) via the 
definition ((a)f)e = (a)(fa2e). 
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5    Relationships between the Spaces Sjt~(A"), Sjfc(r~e(JV)), and 

When trying to prove that Hecke eigenspaces in 5fc(r~.e(iV)) are one-dimensional, we ran 
into problems because forms are "missing" Fourier coefficients: in particular, they don't have 
a (1,1) Fourier coefficient unless e = — 1 (mod N), so we couldn't simply use Corollary 3.6. 
However, the space Sk~(N) doesn't have that problem, and there is a natural projection 
map from Sk,~{N) to Sk{T^x(N)). This gives us a replacement for the missing Fourier 
coefficients; it also gives us a framework for seeing how the spaces 5jfc(r~>£(iV)) differ (as 
T=(iV)-modules) as e varies. 

The key Lemma here is the following: 

Lemma 5.1. The space Sk[T~_e(N)) has a basis consisting of simultaneous Tkfl{N)-eigen- 
forms f that are of the form ff for simultaneous Tk~{N)-eigenforms f G Sk~(N). 

Proof. If f G Sk ~(-W) is a T* ~(7V)-eigenform then it is certainly an eigenform for those 
Hecke operators Tni,n2 where n\ = ri2 (mod N); its e-component fe is therefore an eigenform 
for those operators as well. The Lemma then follows from the fact that Sk,~(N) has a basis 
of eigenforms, by Proposition 4.5. □ 

It is possible for two different T^ ~(iV)-eigenforms in Sk.^{N) to project to the same 
Tfc,e(jV)-eigenform in Sjt(r~.e(iV)); we shall discuss this in Theorem 5.3. Also, some eigen- 
forms in Sk,~{N) project to zero for some choices of e: see the comments after the proof of 
the following Proposition and Section 6. We shall state a slightly stronger version of this 
Lemma as Corollary 5.8. 

Proposition 5.2. If f e 5fc(r~E(JV)) is a Tk,({N)-eigcnform then there is an Tk,-i{N)- 
eigenform g G Sk(T~,-i(N)) such that cmum2{g) = Am,.m,(/) for all mi = rri2 (mod N). 

Proof. By Lemma 5.1. there is an eigenform f G i\. ~(.V) such that Ami.m2(f) = Amii7n2(/) 
for all mi = m,2 (mod N). (We might a priori not be able to assume that ff = /; however, / 
is a linear combination of eigenforms projecting from 5jt,~(iV), so those eigenforms must have 
the same eigenvalues as /.) We can assume that f is normalized. We then set g = f_i; it is a 
normalized eigenform contained in Sk{T~-i{N)), and Xmi,m2(g) = Amiim2(f) = Amiim2(/). 
But Corollary 3.6 then tells us that cmuTTl2(g) = Ami.m,(/). D 

Define Kke(N) to be the subspace of S,jt(r~,-i(iV)) generated by eigenforms whose 
eigenvalues are those of an eigenform in Sk(T~te(N)); define Kk€(N) to be the subspace of 
5fc(r~,_i(iV)) generated by eigenforms which do not arise in such a fashion. The Hecke al- 

gebra Tk>e(N) is isomorphic to the image of T*. ,-i{N) in the endomorphism ring of Kke(N): 
both actions are diagonalizable, so the rings are isomorphic iff the same eigenvalues occur, 
which is the case by the definition of Kk ((N) and by Proposition 5.2.  In fact, the spaces 

Kke(N) and 5fc(r~it(./V)) are isomorphic as T=(7V)-modules. because the eigenspaces in 
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Sk(F~AN)) are one dimensional: we shall prove this fact later as Theorem 5.6. Thus, 
Kk,t{N) measures the difference between Sk{F~ -i{N)) and Sk{T~t(N)); we shall study 
this space in Section 6. _ 

Since the proof of Proposition 5.2 involved lifting eigenforms in Sk{T~,t(N)) to eigen- 
forms in Sk ~{N), we;d like to see how ambiguous the choice of such a lifting is. The following 
Theorem answers that question: 

Theorem 5.3. Let f be an eigenform in Sk~(N), and let H C (Z/iVZ)* be the set of e 
such that f_e T^ 0.  Then: 

1. H is a subgroup of (Z/iVZ)*. 

2. H depends only on f_i. , " 

3. Every element of (Z/NZ)*/H has order one or two. 

4. Ifg is another eigenform inSk~{N) then g_i = f_i if and only if there is a character 
X on H such that g_€ = x(e)f-e for all e G H. 

First, we prove two Lemmas that we shall need during the proof of the Theorem. 

Lemma 5.4. Let f be an eigenform in Sk~{N) and e an element of (Z/iVZ)* such that 
fe ^ 0. For any positive integers m\ and m2 there exist positive integers n\ and n<i such that 
em +n2 = 0 (mod N). {ni.mi) = 1 for i £ {1,2}, and cni)Tl2(fe) #0. 

Proof. By Proposition 4.4. Ef is an eigenform in Skl(Tw{N)) ® Sk2{Tw{N)). Since the 
eigenspaces in Ski{Tw(N)) are one-dimensional, there must exist /; G Ski(Tw{N)) such that 

Sf = /1 ® h- 
For any e' e (Z/NZ)". set 

n>0 
n=e'(modJV) 

It is also an element of ~Ski(Tw{N)). (This follows easily from Shimura [14], Proposition 3.64.) 
Then 

f«  = J3 /l,€'®/2-££', 
e'e(z/Nzy 

by Proposition 4.4. 
Since fe / 0, there exists e' G (Z/iVZ)* such that /1)£/ and /2 _«/ are both nonzero. 

By Lang [10], Theorem VIII.3.1. there exist n; such that (rii,Nmi) = 1 and that cni(/ij£') 
and Cn2(/2 _ee') are both non-zero. But Proposition 4.4 then implies that c„lin2(fe) 7^ 0, as 
desired. '-' 
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Lemma 5.5. Let f G £'/t.~(Ar) be an eigenform such that, for some e. f_e is non-zero. Then 
for all j, f_ej zs non-zero. In particular. f_we is non-zero. 

Proof. We can assume that f is a normalized eigenform. Since f_f is non-zero, there is some 
coefficient A = cmi>m2(f) that is non-zero, where (m,i,N) = 1 and em\ = m^ (mod N). We 
therefore have Tmi.m2(f) = Af. by Corollary 4.7. so for all e' G (Z/iVZ)*, 

Af_f< = (Tmnm2f)_f/ 

= -* mi.mo V--t'm2/m\ ) 

= J- mi,m2 vI—e'e/- 

In particular, setting e' = cJ', we see that 

^r-fJ = J-mi,m.2 U-eJ + 1 ji 

so if i_fj is non-zero then, since A also is, f_fJ+i is as well, and we have our Lemma by 
induction. D 

Proof of Theorem 5.3. We can assume that f is a normalized eigenform. To show that H is 
a subgroup, let t\ and ti be elements oi' H. Thus, there exist n^,- and ?i2,i (for i — 1,2) such 
that cn, i>n2i(f_fi) is non-zero: by Lemma 5.4. we can assume that (ni,1,711,2) = (n2.1, ^2,2) = 
1, and by Proposition 2.4. e,nij = U2,t (mod N). 

By Corollary 4.7, cn,.„„,.,. (f) = An, ii7l, ,(f). But 

■^ll.I'll  2-12.112.2 V1")   =  ^11.1,12.1 (* Mil,2,"2.2 V* )■ 

by our assumption that (n,\\.nu2) = 1, and is therefore non-zero, as is the corresponding 
Fourier coefficient of f. This is a Fourier coefficient of fe for 

« = -("2.i»2,2/ni.ini.2) 

= -(n2,i/niii)(7i2,2/ni,2) 

= -ei£2- 

Thus, £162 e H, so H is a subgroup of (Z/iVZ)*. 
To see that every element of (Z/NZ)*/H has order one or two, pick a G {Z/NZ)* and let 

f G Sk,~{N) be an eigenform. Then ((o)f)_i = (a)(f_a2). Since (a) is an invertible operator 
contained in T* ~{N), by Proposition 4.10, the fact that f_i ^ 0 implies that ((a)f)_i 7^ 0 
as well, so so f_a2 # 0 and a2 G H. 

To show that If depends only on f_i, it's enough to prove the last part of the Theorem. 
We shall prove that if g is an eigenform such that g_i = f_i then there is a character x 
on H such that g_e = x(e)f_e; the converse (i.e. that g's constructed in that fashion are 
eigenforms) follows easily from the definition of Tniin2f as (rni)„2f)e = T„lin2(fcn2/ni). 

Thus, assume that we have normalized eigenforms f and g such that f_i = g_i; let e be 
an element of H, so f_e 7^ 0. By Lemma 5.5, f-(i/£) lS aiSO non-zero. There then exist mi 
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and 77i2 relatively prime to N such that mi = em2 (mod N) and cmum2(f) ■£ 0. Therefore, 
Ami,m2(f) is also non-zero. And 

^mi.mill/I-f — \J-mi,m2^)—e 

= -Lmi,m.2V— em2/mi J 

= ■Lmi.mi l1—1J 

= J-mi,m.2 IS—1J 

= Am]>m2(g)g_£. 

Since Ami>m2(f) and f_£ are both non-zero, this implies that Ami>m2(g) and g_e are also both 
non-zero, and that if we define x(e) = Ami,m2(f)/Ami)m2(g) (for any choice of m; such that 
mi = em2 (mod N) and such that cmii7ri2(f_1/£) ^ 0) then g_£ = x(e)f_e, as desired. We 
then only have to show that x 1S a character, not just a function; that follows by using the 
same arguments that we used to show that H was a subgroup, using the multiplicativity of 
Ami)m2 and Lemma 5.4. .:. D 

We now have all the tools necessary to prove that the spaces 5jfe(r~.£(iV)) are free of 

rank one over Tk,e(N) for a11 e e (Z/NZ)*. 

Theorem 5.6. For all e e (Z/NZ)*, all of the Tk^(N)-eigenspaces in Sk(r~,e(N)) are 
one-dimensional, and the space Sk{r~ie(N)) is a free module of rank one over Tk^(N). 

Proof. Pick a Tfci£(iV)-eigenspace in 5jk(r~)e(iV)). By Lemma 5.1, it has a basis consisting 
of eigenforms of the form fe where f is a normalized eigenform in Sk,~(N). Thus, we need 
to show that if f and g are normalized eigenforms in Skj~(N) such that f£ and g£ are in 
the same eigenspace then f£ and g£ are in fact constant multiples of each other. However, 
Ani.n2(fe) = Ani,n2(f) = cni,n-,(f)- for all U\ = no (mod ^V), so the fact that f£ and g£ have 
the same eigenvalues simply means that f_i and g_i are equal. Theorem 5.3 then implies 
that f£ and g£ are multiples of each other. Thus, the eigenspaces are one-dimensional, and 
5fc(r~5£(iV)) is indeed a free Tfci£(iV)-module of rank one. D 

The basic idea behind the proof of Theorem 5.6 is that, if we have a form in iS'jfc(r~i£(iV)), 
we can use Lemma 5.1 to fill in the Fourier coefficients that are forced to vanish by Propo- 
sition 2.4. Of course, it's often easiest just to work with Sk,~{N) and X~(N) directly. As 
usual, we have the following Corollary: 

Corollary 5.7. For all e € (Z/pZ)*, the space 5(2,2)(r~,e(p)) is a free module of rank one 
overT*22)e(p). 

Proof. This follows from Theorem 5.6 and Proposition 2.7. D 

We also have the following slight strengthening of Lemma 5.1: 

Corollary 5.8. For every eigenform f 6 Sk(F^,e(N)) there exists an eigenform f G Sk~(N) 
such that f£ = /. 
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Proof. By Lemma 5.1. Sfc(r~.£(iV)) has a basis consisting of such eigenforms. Since the 
eigenspaces are one-dimensional, however, every eigenform must be a multiple of one of 
those basis elements. □ 

And. finally, we have the facts that K'k((N) and Sk{T~AN)) are isomorphic as T|(JV)- 
modules and a geometric consequence of that fact: 

Corollary 5.9. For alle e (Z/NZ)*, Sjfc(r~ _i(JV)) is isomorphic toKk.t{N)®Sk(r~AN)) 
as a module over T=(N). 

Proof. By definition, Sk(T~,-i(N)) = KkiC{N)®K'kiC{N). But K'kl(N) is a TL(iV)-module 
that is a direct sum of one-dimensional spaces corresponding to the Hecke eigenvalues oc- 
curring in Sfc(r~ e(iV)); the Corollary then follows from Theorem 5.6. , D^ 

Corollary 5.10. If N is a power of a prime then the geometric genus of (a desingularization 
of) X~,e(N) is maximized when e = — 1. " 

Proof. Corollary 2.3 and Proposition 2.8 allow us to reduce this Corollary to showing that, 
for all e and for all M\N, the dimension of 5(2,2)(r~-i(M)) is at least as large as the 
dimension of S72.2)(r~.f(M)). This in turn follows directly from the above Corollary.        G 

This Corollary is in fact true for all N < 30, as can be seen by examining the tables 
at the end of Kani and Schanz [8]. Guess 2.6 would imply this Corollary for all natural 
numbers JV, since in that case Proposition 2.8 would be true for all N. 

6    The Hecke Kernel 

In the previous Section, we saw that, for all e € (Z/NZ)*. we can write 5t(r~._i(iV)) 
as Kk,((N) ® 5fc(r~.f(A

r)). Thus, the key to understanding modular forms in all of the 
5'fc(r~.£(iV))'s is to understand the space Sfc(r~ _i(JV)); once we have that, we then need 
to understand its subspaces Kk,e{N). The goal of the present section is to study those 
subspaces, which we call "Hecke kernels". Note that Corollary 5.10 gives us a geometric 
interpretation of these spaces in some situations. 

We first give the alternate following characterizations of forms in Kh,e{N)~- 

Proposition 6.1. Let f be an eigenform in Sk{T^-i(N)) and let e be an element of 
(Z/NZ)*.  The following are equivalent: 

1. f is inKkti(N)- 

2. For any or all eigenforms f G 5fc;~(iV) such that f_i = /, f€ = 0. 

3. For all n\, n<i such that en\ + n<i = 0 (mod N), Tnun.2f = 0. 

4- For all m\, mi, n\, and no with n\m\ = n^m^ (mod N), en\ +n9 = 0 (mod JV), and 
(nurrii) = 1 for i E {1,2}, we have cnimi,„2m2(/) = 0. 
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Proof. We can assume / is a normalized eigenform. First we, show the equivalence between 1 
and 2: let f be an eigenform in Sk,~{N) such that f_i = /, which we can find by Corollary 5.8. 
By Theorem 5.3, fe only depends on the choice of f up to a non-zero constant multiple. If 
fe 7^ 0 then fe is an eigenform in Sk{T~,e(N)) whose eigenvalues are the same as those of 
/, hence are the same as the Fourier coefficients of /, so / isn't in Kk>e(N). Conversely, if 
/ isn't in Kk.{{N) then there exists an eigenform g 6 Sk(T~,e(N)) whose eigenvalues are 
the Fourier coefficients of /. Corollary 5.8 allows us to pick an eigenform g £ Sk,~{N) 
such that ge = g; multiplying it (and g) by a constant factor, we can assume that g is a 
normalized eigenform. Then ge and g_i have the same eigenvalues, so g_i is a multiple of 
/, by our assumption on g; g therefore gives us an eigenform in Sk,~(N) such that g_i = / 
and ge ^ 0, as desired. By Theorem 5.3, this is independent of the choice of g, justifying 
our use of the phrase "any or all". ;/   .«= 

Next we show that 2 and 3 are equivalent. Thus, we have normalized eigenforms / € 
Sk{T~-i(N)) and f 6 Sk^(N) such that / = f_j and we want to show that fe = 0 iff, for 
all ri\ and ri2 such that en\ + ri2 = 0 (mod N), Tnii„2/ = 0. First assume that f£ = 0. By 
Lemma 5.5, fj/£ = 0. Then for all n* as above, 

Jni,7i2./  = J-ni,n2\*—l) 

= (-*ni,H2* J-Mi/ri2 

= {Tni,n2f)l/e 

= ^ni,7i2(f)fl/e 

= 0. 

Conversely, if TnijTl2f = 0 for all nt- with en\ + no = 0 (mod N) then the above series 
of equalities shows that Ani)„2(f)f1/e is always zero, or equivalently (by Corollary 4.7), 
Cm,n2(f)fi/£ = 0. If fe 7^ 0 then there exist such n,- such that cni)7l2(f) ^ 0; thus, f^ = 0, so 
fe is zero after all, by Lemma 5.5. 

Next we show that 3 implies 4. Assume that, for all n\ and ri2 with en\ + ri2 = 0 (mod 
N), Tnun2f = 0. Then, for all mi and m2 with {rrii.ni) = 1, we have Tminiim2„2(/) = 
Tmi,m2{Tni,n2(f)) = 0, so in particular that is true for m* with {mi,rii) = 1 and with 
mini = J7i2n2 (mod N). But Corollary 3.6 then implies that cmi„ljm2n2(/) = 0. 

Finally, we show that 4 implies 2, so let / be a normalized eigenform such that all 
such coefficients cmi„Iim2„2(/) are zero, and let f £ Sk~{N) be a lift of /. Assume that 
ff T^ 0. Thus, there exist n\ and n2 with Cnlin2(f) ^ 0, or, equivalently, Ani?n2(f) ^ 0. 
Then for all mi and m2 with (m^rij) = 1 and with mini = m2n2 (mod N), or equivalently 
(l/e)mi + m2 = 0 (mod N), 

O = "mini ,7712712 \i) 

= Ami.m2(t)Ani;n2(i), 

so Ami,m2(f) = Ofor allm, with (mi,rii) = 1 and (l/e)mi+m2 = 0 (mod N). By Lemma5.4, 
fi/t = 0; by Lemma 5.5, fe = 0, a contradiction. Thus 4 implies 2. D 
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For an arbitrary form in Kk.e(N), it is necessary for those coefficients specified in part 
4 of Proposition 6.1 to vanish. The following Proposition shows that even more coefficients 
of elements of Kk,e(N) vanish: 

Proposition 6.2. For all a and e in (Z/iVZ)*, the spaces KkA
N) and Kk,a*AN) are eQual- 

Proof. Let / be an eigenform in Kkx(N): we want to show that / is in Kkta2e(N). Let f be 
a lift of it to Sk~{N). By Proposition 6.1, f€ = 0. Thus. ((a_1)f)a2£ = (a_1)(ff) is also zero. 
But by Proposition 4.10. (a-1) is in T* ~(iV). so ((cT')f) is a multiple off, which is non-zero 
since (a-1) is invertible. Thus, fQ2£ = 0, so / is in Kka2e(N), by Proposition 6.1. D 

Thus, if f G Sk ~{N) is a normalized eigenform such that fe is zero for some e, or 
equivalent^ that f_i is in Kk,({N): then fa2f is also zero for all a G (Z/JVZ)*. So if we let' 
/ = Sf then lots of the Fourier coefficients of / are zero. This leads one to suspect that 
/ might be related to forms with complex multiplication, where we define an eigenform g 
on XW{N) to have complex multiplication if there exists a non-trivial character </> such that 
4>{p)\p\g) = \p(g) (or, equivalently, \p(g) = 0 unless <f)(p) = 1) for all primes p in a set of 
density one, where Xp(g) is the Tp-eigenvalue for g. (This is as in Ribet [12], §3, except that 
we don't require g to be a newform.) We also say that g is a CM-form.. It is indeed the case 
that such forms are linked to elements of the Hecke kernel: 

Theorem 6.3. An eigenform f is in K{kl,k2)A
N) if and only if there exist eigenforms 

fi E Ski{X(N)) such that, for all n{ = n2 (mod A') with {rii.N) = 1. 

Cni,n,(/) = Cni(/i)cn2(/2) 

and such that the ft have complex multiplication by some character cp such that 4>{—e) = —1. 
Furthermore. K^uk->),A^) 's spanned by such forms. 

Proof. Let k = {kx,k2). and let / 6 Sk{T^.({N)) be an eigenform. Pick an eigenform 
f e Sk~(N) such that f_i = / and let H be the subgroup of e'_£ (Z/iVZ)* such that f_£- # 0, 
as in Theorem 5.3. By Proposition 4.4, Sf is an eigenform in Skl{rw{N)) <8> Sk2(ry{N)); but 
eigenspaces in that latter space are one-dimensional, so Ef = /i®/2, where /; S S^ (TW(N)) 
is an eigenform. We wish to relate /'s being an element of Kk,c{N), i.e. having fe = 0, to 
the /j's being CM-forms. 

For all mi and m2 with (m,,N) = 1, cm,,m2(f) = crni{fi)cm2{f2)- Ke'&H, i.e. f_e' = 0, 
then, for all m* such that t'm\ = m2 (mod N), Cmurn2(f) = 0, so cmi (/i) = 0 or cm2(/2) = 0. 
Since the fi are eigenforms, their first Fourier coefficients are non-zero; thus, setting m2 = 1, 
cmi(/i) = 0 for mi = 1/e' (mod N) where e'gH. Since H is a subgroup, this means 
that cmi(/i) = 0 for m^H (where we project mi to an element of (Z/iVZ)*). Similarly, 

Cm2(h) = 0 for rn2&H.        _ 
First, assume that / G KkA

N), i-e- that fe = °- or that -£&H. Pick a non-trivial 
character <j> of {Z/NZ)* that is trivial on H and such that <f>{e)  # -1.    The previous 
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paragraph shows that f\ and f-i both have complex multiplication by 4>. By part 3 of 
Theorem 5.3. 6 has order two; thus, </>(—e) = — 1, as desired. 

Conversely, assume that there exists a character (f> such that the forms fi have complex 
multiplication by (f> and such that </>(—e) — —1. Pick m\ and 7712 such that em\ + 7712 = 0 
(mod N). Then -e = mo/mi (mod N): since 0(—e) = —1, either 4>{m{) or 0(m2) is not 
equal to one. Thus, either cmi(/i) or cm2(/2) is zero, so cmi.m2(f) = 0. This is true for all 
such mj, so fe = 0, i.e. / G Kk.e{N). 

Finally, the fact that Kk*(N) is spanned by such forms follows from the fact that it has 
a basis of eigenforms. which is obvious from the definition of Äfc,e(iV). D 

For p prime we define K~{p) to be the subspace K^,2),eip) °f 5(2,2) (r~,£(p)) for any e 6 
(Z/pZ)* such that —e is non-square, where we identify 5(2,2) (r~,£(p)) wi*n 5(2,2) (r~,£(p)) by^ 
Proposition 2.7. (For this to make sense, we should assume that p / 2; since 5(2,2) (r~)£(2)) 
is zero for all e, this isn't very important.) This is independent of the choice of e by 
Proposition 6.2; its dimension is the difference fjetween the geometric genera of X~,_i(p) 
and -X~,£(p), by Corollary 5.10. We shall give an explicit basis for this space in Sections 9 
and 10. 

7    The Adelic Point of View 

As we have seen in Section 4, to get a satisfactory theory of Hecke operators, we had to 
consider the surface X~(N), not just the surfaces X~,e(N). In fact, to even construct the 
surfaces -X~,e(iV) (at least when working over Q), we passed via the surface X~(N), as 
mentioned in the Introduction. To explain these facts, it helps to look at X~(iV) from the 
adelic point of view. Thus, we review some of definitions from that theory and explain their 
relevance to our context. For references, see Diamond and Im [2], Section 11. 

Let A°° denote the finite adeles, i.e. the restricted direct product of the fields Qp with 
respect to the rings Zp. Let U be an open compact subgroup of GL2(A°°). We define the 
curve Yu to be GLJ(Q)\(fj x GL2(A°°))/t/. Here, GL^"(Q) is the set of matrices in GL2(Q) 
with positive determinant, acting on $j via fractional linear translations and on GL2(A°°) 
via the injection Q <-» A; U acts trivially on fj and acts on GL2(A°°) via multiplication 
on the right. This defines Yu as a non-compact curve over the complex numbers; it has a 
canonical compactification Xu given by adding a finite number of cusps. The curves Xu 
and Yu in fact have canonical models over Q which are irreducible; over C, however, the 
number of their components is given by the index of detU in Zx. If U and U' are open 
compact subgroups of GL2(A°°) and if g is an element of GL2(A°°) such that g~lUg C U' 
then multiplication by g on the right gives a map g*: Xu —> X^; it descends to the models 
over Q. 

We define a cusp form of weight k on Xu to be a function f: S) x GL2(A°°) —> C such 
that 

1. f{z,g) is a holomorphic function in z for fixed g. 
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2. f(rfz,'yg)=j('r.zrkUz.g) for all 7 G GL+(Q). 

3. f («,(?«) = Hz.g) for all tt e U. 

4. f(^.g), considered as a function in z. vanishes at infinity for all g. 

We denote by Sjt(L') the space of all such forms. If g~lUg C U' then we get a map 
g,:Sk{U') -> 5fc(6

r) by defining (^f)(z,/i) to be f{z,hg). 
Each {/-double coset in GL2(A00) gives a Hecke operator, which acts on Sk{U). If 

U - GL2(Zp) x Up then the Hecke operator Tp is generated by the elements of M2(Zp) whose 
determinant is in pZ*: defining the Hecke operator Sp to be the double coset generated by 

( Op ) m tne GL2(QP) component, the ring of Hecke operators consisting of those double 

cosets generated by elements in GL2(QP) is generated by Tp and Sp   . 
If we define Sfc(C) to be the direct limit of the Sfc(£/)'s ^ ^ §ets arbitrarily small then 

the above maps g% make this into an admissible-representation of GL^A00); the original 
spaces Sk{U) can be recovered from that representation by taking its [/-invariants. The 
main fact that we need is the following adelic analogue of Atkin-Lehner theory: 

Theorem 7.1 (Strong Multiplicity One). // n and TT' are two irreducible constituents 
of Sk(C) such that TTP and n'p are isomorphic for almost all p then n and ir' are equal. (Not 
just isomorphic.) Furthermore, iff and f are elements of IT and IT' then this is the case iffi 
and f have the same eigenvalues for almost all Tp and Sp; in this case, they have the same 
eigenvalues for all p such that f e Sk(U) for some U of the form GL^Zp) x Up. D 

The subgroups that we shall be concerned with are 

UW(N) = LeGL2(Z 

and 

C/(iV) = |5eGL2(Z)   g=(l   J 

g=(*Q   J )    (mod .V) 

\    (mod iV)j. 

These define the modular curves XW(N) and X(N), respectively. The modular interpre- 
tation of X(N) is given as follows: for each e G (Z/iVZ)*, choose a matrix ge G GL2(Z) 
congruent to (^ °) mod A\ The strong approximation theorem for GL2 implies that every 
point in Y(N) has a representative of the form [z,ge) for some unique choice of e; we let 
this point correspond to the elliptic curve C/(z, 1) together with the basis for its AT-torsion 
given by (ez/N, l/N). We then have an action of GL2(Z/AZ) on X(N) that sends a matrix 
9GGL2(Z/AZ) to the map (g-l)*:X(N) -> X(N), where g is any lifting of g to GL2(Z); 
it has the modular interpretation of preserving the elliptic curve and having g act on the 
basis for its A-torsion on the left. 

Note that, in contrast, the action of SL2(Z/A'Z) on XW(N) can't easily be defined 
adelically; this is one reason why it's hard to define such an action over Q, and thus why 
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we find it convenient to use the curves X(N) rather than XW(N) at times. However, with 
a bit of care it is possible to use the action of GL2(Z/iVZ) on X(N) to extract information 
about the action of SL2(Z/A?"Z) on XW(N); we shall do this in Section 9. 

Now we turn to the surfaces X~(N). Definitions similar to the above go through, replac- 
ing^ x GL2(A°°) by.f) x S) x GL2(A°°) x GL2(A°°) and putting in two copies of everything 
else. We then recover our surfaces X~(N) and spaces Sk ~{N) of cusp forms by using the 
following subgroup: 

C^(A0 = {(si,92)eGL2(Z)xGL2(Z) \gi=g2    (mod TV)}. 

The above definitions of Hecke operators pass over immediately to our situation; in partic- 
ular, it is easy to check that TPliP2 is TPl x TP2 (for (p,N) — 1) and (p) is 1 x Sp (agamfor. 
(p,N) = 1; note that Sp x 1 is (p-1)). Using these definitions, we also easily see that that, 
as claimed, 

X~(N) = GL2{Z/NZ)\(X{N) x X(N)), 

where GL2(Z/NZ) acts diagonally with the action given above. 
In contrast with this situation, there does not exist a subgroup U~.e(N) that would allow 

us to define X~te(N) in the same way. This explains why we couldn't naturally define a 
Hecke operator Tni>„2 acting on X~te(N) unless n\ = n2 (mod A"), and why we have to go 
to a bit of work to define those surfaces over Q. Of course, it isn't hard to see which points 
on X~(iV) are on X~:6(N) for some e: they are the points that have a representative of the 
form {z\,Z2,g\,g2) with g^ £ GL2(Z) and with detgi = edetgo (mod N). And if we are 
given f € Sk{U~(N)) = 5/c.~(Ar), we can recover fe from it by letting 

fe(2l,Z2) = f(zi,Z2,h9()- 

With these definitions in hand, we can show that there is no obvious way to map forms 
in Sk,~{N/d) to forms on Sk ~(N) other than composing an automorphism of Sk,~{N/d) 
with the natural injection. We consider the "obvious" maps to be maps of the form gt. 

Proposition 7.2. The only g E GL2(A°°) x GL2(A°°) such that 5_1?7~(iV)ff C U~(N/d) 
are those in Z(GL2(A°°) x GL2(A°°)) ■ U~{N/d), where Z(G) denotes the center ofG. 

Proof. This is a local computation, so we can replace GL2(A
0C) x GL2(A°°) by GL2(Qp) x 

GL2(Qp), U~(N) by U~(pk) n (GL2(QP) x GL2(QP)), and U~{N/d) by a similar statement 
with pi in place of pk (for some j < k). Assume that g — (gi,g2). One easily sees that the 
only matrices h in GL2(QP) such that /i_1GL2(Zp)/i C GL2(Zp) are in Z(GL2(Qp))-GL2(Zp); 
this handles the case j = k = 0. Also, since U~{p>) C GL2(Zp) x GL2(Zp) and since any 
matrix in GL2(ZP) is the first coordinate of a matrix in U~(pk). we can assume that, after 
multiplying them by an element of Z(GL2(QP) x GL2(QP)), the gi are both in GL2(Zp). We 
then have to show that g\ = g2 (mod pi). Multiplying both g\ and g2 by 5J"1, we can even 
assume that g\ is the identity matrix. 
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Thus, we have to characterize those g2 G GL2(Zp) such that, for all {hi. ho) G GL2(Zp) x 
GL2(Zp) such that hx = h2 (mod pk). hi = g2

lh2g2 (mod pj). Since j < k. hi and h2 both 
reduce to the same matrix matrix h G GL2(Z/(p7)Z), and our assumption is then that, 
after reducing mod p>, go normalizes h. Thus, the image of go mod pi is in the center of 
GL2(Z/(pJ)Z); so, after multiplying#9 by an element of Z(GL2(Zp)). gi and g2 are congruent 
mod pi, i.e. {gug2) G Z(GL2(Zp) x GL2(Zp)) • U~(p>), as desired. D 

Finally, we note the following simple fact about Hecke operators: 

Proposition 7.3. Let G equal GL2(A°°) or GL2(A°°) x GL2(A°°), and let U = Y[pUv be 
a compact open subgroup of G. If gi and g2 are elements of G such that, for some choice 
of primes p\ ^ p2, the p'th component of gi is the identity unless p = pi, then the Hecke 
operators Ug\U and Ug2U commute. 

Proof. We can write UgtU as a disjoint union of left cosets Ugltj where the p'th component 
of gij is the identity unless p = px. The Proposition then follows from the fact that gij and 
g2ji commute. □ 

8    Hecke Operators Dividing the Level 

In defining our Hecke operators T„,,„2 above, we have assumed that (n,. JV) = 1: this has 
led to a theory that is exactly parallel to the theory of Hecke operators Tn on XW{N) with 
(n,JV) = 1. Indeed, they look exactly the same locally when considered adelically (other 
than the obvious fact that we have to index them by two integers instead of one). When 
considering Hecke operators Tni.„2 with {n{,N) > 1, the situation becomes much more 
delicate. We can restrict ourselves to considering double cosets generated by matrices in 
GL2(QP) x GL2(QP) for p\N prime: however, in contrast to the situation for (p. JV) = 1, the 
algebra generated by such double cosets no longer has an obvious, small set of generators 
and is no longer commutative. This problem arises in the modular curve case: there, it is 
traditional to restrict oneself to a smaller algebra of double cosets. hoping to find an algebra 
which is large enough to have useful operators in it but small enough to be tractable. 
The goal of this section is to define such an algebra in our case and to begin studying its 
properties. 

For purposes of this section, p will be a prime dividing Ar. and p7' will be the highest 
power of p that divides JV. 

We define A~(JV) to be the set of matrices (31,92) G M2(Z) x M2(Z) such that g\ = g2 

(mod JV), and we define the Hecke algebra Tk ~(iV) to be the algebra of endomorphisms 
of 5'fc~(Ar) generated by double cosets contained in A~(iV). Furthermore, for n\ and n2 

positive integers and for e G (Z/iVZ)*, we define the Hecke operator Tni,„,,,, to be the set 
of double cosets of matrices {gi,g2) G A~(i such that the ideal generated by detg* is n*Z 
and such that r?(detgi)/ni = {detg2)/n2 (mod JV). (Note that (det<7;)/n! is in Zx.) If 
{rii,N) = 1 then this is zero unless 77 = ni/n2, in which case we recover our old operator 
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Tni)„2. If p\N. however, there may be multiple rj such that TpJlpj2.ri 
1S nonzero: note that it 

is always zero unless either j\ = j2 or both ji are at least as large as j. 
When translating this back to our earlier point of view, we find that the set of Hecke 

operators that send forms in Sk{T~.e(N)) to form in Sk(T~tCi(N)) are given by taking double 
cosets in the following set: 

A~ £v = < »~,e,«' 

a,i,bi,Ci,di e Z, 
a\d{ - biCi > 0, 

ai    bA (a2    b2\\ a\    =   a,2 (mod N), 
c\    di) \c2    d2 61    =   e'b2 (mod N), 

/ 
eci    =   c2 (mod N), 
ed\    =   e'd2 (mod N) 

This is the same as the definition of Al e e, except that we remove the condition on the 
determinant; it contains TnuJl2)V iff 77 = e'/e. Thisiias the following modular interpretation: 
if we let 77 = e'/e then TnitTl2tV sends a triple (E\,E2, </>) to the sum of all triples (E[,E2,4>') 
such that there exist isogenies Wi: E{ -> E[ of degree nj such that the following diagram 
commutes: 

Ei[N) 

E[[N] 

-> E2[N] 

7T2 

-> E'2[N\ 

We define Tjti£(iV) to be the algebra of endomorphisms of Sk{T^e(N)) generated by the 
-Lni,n.2.l S. 

The operators Tni.n.2 for (n,. N) > 1 are a good deal more difficult to study than the 
Tni,n2 f°r ini:N) = 1. It's harder to get coset representatives, and it's impossible to get a 
complete set of upper-triangular coset representatives, which makes studying the action of 
these operators via Fourier coefficients much more difficult. The case TP)P)i already begins 
to illustrate some of the difficulties and surprising features that appear: 

Proposition 8.1. Let p be a prime dividing N. let e be an element of (Z/JVZ)*, and let 
e be an integer congruent to e mod N. Then the set of elements of A~;e>e(A

r) that have 
determinant (p,p) has the following left coset decomposition: 

I 
II r~£(A0 

. 0<i<p 
\0<fc<p 

HHr-W(; %&\ \0<l<p 

Proof. Let (^1,^2) be an element of A~?e;e(iV) with determinant (p,p).  By multiplying 71 
on the left by an element of T(l), we can assume that 5\ is either of the form (0 p6) or of the 
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form (£i). This forces 62 to be congruent to (Q£) or to (%°)- Assume that 5i is (oep
6); 

the other case is similar and easier. We can further change 52 by multiplication on the left 
by an element of TW(N); we have to show that, by doing so, we can get to exactly one of 
our putative representatives. 

Assume that 

_ fl + a'N    b + b'N\ 
02 ~ {   c'N      p + d'NJ- 

The fact that its determinant is equal to p is equivalent to the statement that 

d' + a'p + a'd'N - be' - b'c'N = 0. (8.1) 

I claim that there is a unique k between 0 and p such that S2 and ( 0 
+

p    j generate the 

same left Tw(N)-coset, or equivalently such that •- 

fl + a'N   b + b'N\(l   b + kN}'1 

\   c'N      p + d'NJ\0        p    ) 

_ 11 + a'A"    -kN/p - a'bN/p - a'kN2/p + b'N/p 
~ {   c'N 1 - bc'N/p - c'kN2/p + d'N/p 

is an element of TW(N). Using the fact that p\N. this reduces to the pair of equations 

b'-k- a'b = 0    (mod p) (8.2) 

d'-bc' = 0    (modp). (8.3) 

But (8.3) is an immediate consequence of (8.1): and we can choose a unique A: mod p such 
that (8.2) is satisfied. This proves our desired existence and uniqueness. D 

We'd like to use Proposition 8.1 to determine the action of TPtP on Fourier coefficients. 
Unfortunately, the matrices (^ °) aren't upper triangular for / ^ 0, which causes problems 
in understanding how they affect Fourier expansions. We could perhaps get around that 
by introducing some sort of operator which encapsulates the effect of those matrices (just 
as we introduced the action of the era's when considering the action of Hecke operators in 
Sections 3 and 4); however, it's not clear that doing so would be useful. Instead, we shall 
simply note the following fact: 

Lemma 8.2. Let f be an element of Sk(T~tt{N)), let p be a prime dividing N, and let 

0<Kp     \\0l)'\lN l)J 

Then cmi:Tn2(g) — 0 unless p\mi. 
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Proof. This is equivalent to showing that g is invariant under the action of the matrix 

((o l); ( o "V/P ) ) • Tnus> f°r eacn ^ we neec* to fin(i a uni(lue ^' sucn tnat 

p    0\A   N/p\( p     OV1 

ZJV i;v°   ! /v,JV V 

is in ru,,(iV). But this matrix is equal to 

1 - l'N2/p N      \ 
lN/p-l'N/p-ll'N3/p2    l + lN2/p)' 

so choosing I' = I works. . CL 

Using this, we can get partial information about the Fourier coefficients of TPiP(/): 

Proposition 8.3. Let f be an element of Sk{T~,£{N)), and let p be a prime dividing N. 
Then if (rrij,p) = 1, we have 

, m, _ fcpm^pmiif)    if «m + m2 = 0    (mod iV), 

10 otherwise. 

Proof. Let k = (ki.k2). By Lemma 8.2, we can ignore the matrices ((oi)'(jjvi))- Thus, 
we have to determine the Fourier expansion of g, where g is defined as 

0<6<p       lOpi'lo     p     ) I 
0<k<p    V > 

-2 V^ . /f\f,2nV~m1(z1+eb)/pN2ir^lm-2(z?+b+kN)/pN 
— P / j Lmi,m2U;e e 

0<6,A:<p 
0<mi,m2<oo 

_    -1      y^ ^\e2irvcTmi(zi+c6)/pJVe2jrx/:::Tm2(2:2+fr)/pJVi 

b,mi,p\m,2 

By Proposition 2.4. cmiim2(/) is zero unless em\ + mi = 0 (mod iV).  Thus, p|m2 implies 
that p|mi. Letting m^ = m^/p, we then have N/p dividing em'x + m2, and 

6,m(. 

XI cpm'vpm'2{f)(h
1'l2n^ 

em'1+m/
2sO(modW) 

which is what we wanted to prove. □ 
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Thus. Tp.p.i pulls out the Hecke coefficients that are multiples of p, and makes sure that 
the ones that Proposition 2.4 forces to be zero are zero. 

I don't know a good set of coset representatives for arbitrary Tni,n,'s. However, as 
Proposition 8.3 showed, we don't need a complete set of coset representatives to get par- 
tial information on how the Hecke operators acts on Fourier coefficients. A partial set of 
representatives for the operators T n „,2    is given by the following Proposition: 

Proposition 8.4. Let p be a prime dividing N, let e and e' be elements of (Z/NZ)*, let ji 
and J2 integers such that e'p31 = (P^2 (mod N), and let e' be an integer congruent to e' mod 
N. Then the set of elements of A~,f,£'(JV) that have determinant (p31,^2) can be written as 
S\JT where S has the following left coset decomposition: 

II  r 
bez/pJiz 
k€Z/p>2Z 

where we can choose b and k to be elements of an arbitrary set of integer representatives for 
the Z/pi'Z's, and where T is such that, considered as an operator sending modular forms to 
functions, then for all f <E Sy.(r~,c(jV)), we have cmijn,(f\r) = 0 unless p\rrij. 

Proof. Let (61,62) be an element of A~i£)£ of determinant (p71.^2). By multiplying 61 on 
the left by an element of r(l), we can assume that it is equal to (g e'd

b). where ad — p>1. 
Furthermore, the choice of a, b, and d is unique up to changing b by a multiple of d. We 
define 5 and T by saying that (61,62) G 5 if a is equal to 1 (hence d = pPx) and (^1,^2) € T 
otherwise: we then have to show that S and T have the desired properties. 

First assume that a = 1. so that 6\ = ( J f,M. In that case. 60 is equal to ( l^"v
; ^+d,N ) 

for some a', b'. c'. and d'. and we have to show that 60 is in the same left FW(N) coset as 

( 0 p>2 ) f°r a unique k G Z/pJ'2Z. The fact that 60 has determinant p3'2 is equivalent to 
the statement that 

d! + a'p>2 + a'd'N - be' - b'c'N = 0. (8.4) 

We want the matrix 

1 + a'N     b + b'N \/l    b + kN\   l 

c'N      p?'2 + d'NJ 10      p> 2 

1 + a'N   -kN/pJ* - a'bN/pi2 - a'kN2lp>2 + b'N/pi* 
c'N 1 - bc'N/pi2 - dkN2/p>2 + d'N/pi* 

to be an element of r^iV). This reduces to the pair of equations 

b'-k-a'b- a'kN = 0    (mod p?2) (8.5) 

d - be' - c'kN = 0    (mod p>2). (8.6) 
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There is a unique k £ Z/p^Z such that (8.5) is true: the coefficient for k in the equation is 
-(1 4- a'N), which is invertible in Z/p^Z since p\N and Z/p^Z is a local ring. We need to 
show that, for that A;, (8.6) is also true. We shall show this by induction, by showing that 

d! -be' -c'kN = (-a'N)l(d' -be' -c'kN)    (modp7'2) (8.7) 

for all i. since p\N. (-a'N)1 is congruent to zero mod p72 for / sufficiently large, so this 
implies (8.6). Furthermore. (8.7) is trivially true for I = 0; for the induction step, we then 
have to show that 

d! - be' - c'kN = (-a'N)(d' - be' - c'kN)    (mod jp2). (8.8) 

But 

d' - be' - c'kN = b'c'N - a'd'N - c'kN by (8.4) 

= b'c'N - a'd'N - c'Nfi- a'b - a'kN) by (8.5) 

= -a'd'N + a'bc'N + a'c'kN2 

= (-a'N)(d' -bc'-c'kN), 

proving (8.8). 
Now assume that <5i = (g e'd

b) with p\a. In that case. (61,62) must be an element of T. 
So we just have to show that, for all / € 5fc(r~i£(JV)). cmii7n,(/|r) is zero unless p\m{. To 
do this, we have to show that the action of T is preserved under right multiplication by 

( ( 0 N\P )' (0 ?)) • Thus- wel1 be done if we can show that 

is congruent to 6\ mod N. But that is equal to 

iN/p a   e'b\(l   N/p\ _ fa   e'b + al 
0    d) \0     1  )~ \0 d 

which is congruent to 6\ mod N by our assumption that p\a. D 

As with Proposition 8.3, this gives us partial information about Tp,1)Pj27?'s action on 
Fourier coefficients: 

Proposition 8.5. Let p be a prime dividing N, let e and e' be elements of (Z/NZ)*, let 
ji and J2 integers such that ep*1 = e'p*2 (mod N), let n = e'/e. and let f be an element of 

Sk(T~AN))-  Then tf'(mi-.P) = !• we have 

(T ,fU_    V'm;^    ife'mi+m2 = 0    (mod N), 
cmi,m2\-LpJi.pJ2.n\J )) — S „ ,, 

0 otherwise. 
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Proof. We need to study f\S. where S is the operator given by Proposition 8.4. Let q be 
the greatest common divisor of p>1 and N. which is also equal to the g.c.d. of p32 and N by 
our assumption on the jt's. Then the integers b' + Nb", for 0 < b' < q and 0 < b" < p'^q, 
provide a complete set of representatives for Z/^'Z. Also, we simply take the integers k 
between 0 and p>2 as our representatives for Z/p}2Z. Then, ignoring coefficients not prime 
to p, we have 

VL^T//lzl>z2j -y 2_J        
J <{(l e'b'-\e'b"\    flb' + Nb" + Nf\\^l,2> 

0<b'<q 
0<b"<p>i/q 

0<k<p>2 

l/A e'b'-\e'b"\    A b' + Nb" + Nf\\ 
\\0        p>i        ;;V0 pit )) 

= p-Ui+h) £ Cm^if) 
n     r—r(       z,+e'b' + Ne'b"  ,        z2+b' + N(b" +k)\ 

0<b'<q 
0<b"<p>l/q 

0<fc<p>2 
0<mi,m2<oo 

= P"Jl Yl        cm,,m2(/)e 
b'.6".mi.m2 

pJ-2,m2 

n     /—r/       zi+e'b'+Nc'b" ,        z2+b' + Nb"\ 

Write 77Z2 as p>2Tn'2. Then since cm,,m,(/) is zero unless em,\ + mo = 0 (mod N) and since 
p7'2177i2, we can write mj as qm[. Also, 

2-sf=\miNb"IpiiN _    2-y/=Tm'.,b" _ j 

so we can ignore that term. The above is therefore equal to 

„-ji V        r //-u2-v/rT{(/m'1(c,+e'6' + .Ve'6").,yi.V-m:,(.-2 + 6')AV) 

b',b",m\,m'r, 

_„-l        V       r iif]p2-s/^]tqm\(:i+e'b')/1>>^\' + m'2{z2+b')/N) 

(P*2/<?)K 

We can then write m\ as (p31 /q)m", or equivalently mi = plxm'[. Since we can assume that 
emi+77i2 = 0 (mod N) and since ep31 = e'p72 (m°d N), we have e'm'{ + m'2 = 0 (mod iV/g). 
So the above is equal to 

„-1      V^      ~ (f\„ml„m2027r^T(e'm'Um')b'/N _ V^ ( f\„m"„m* 

t/,m" ,m'2 m",m'2 

N\(m'{+e'm2) 

as desired. □ 

This allows us to determine the image of TpJl iPj2)7// in Sjt(r~.f'(iV)) for any form / G 
5,fc(r-,e(iV)). (Note that Tpjl ^^ is not well defined as a map from Sk{T~,e{N)), just as a 
map from Sk(T~te(N)).) 
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9    The Case of Prime Level 

In this Section, we discuss facts that are special to the case of weight (2,2) forms on prime 
level. The main fact here is that we can ignore Fourier coefficients that are multiples of p, 
as stated in Proposition 2.7; this in turn implies that certain spaces of cusp forms are free 
of rank one over their Hecke algebras. This is encapsulated in the following Theorem: 

Theorem 9.1. For all primes p. the natural map from 5(2,2) ~(p) *° 5(2,2),~(p) is an iso- 
morphism; identifying those spaces, the algebras T(2,2),~(p); ^722* (p), and T(2,2),~(p) are 

all equal as algebras of endomorphisms of S(2,2),~(p)- Similarly, for all e 6 (Z/pZ)* the nat- 

ural map from 5(2,2) (F~,e(p)) to 5(2,2)(r~,e(p)) is an isomorphism; identifying those spaces, 

the algebras T(2>2),e(p), T(22)e(p)> am* ^(2,2),e(p) are eQua^ as a&e&nw of endomorphisms of, 
5(2,2) (r~,e(p)). The spaces 5(2.2) ~(p) an^5(2,2)(r~,£(p)) are free of rank one overT(2,2),~(p) 
and T(2,2),£(p); respectively. 

Proof. The claimed isomorphisms of spaces are Proposition 2.7. We give the proof of the 
first set of equalities of algebras; the proof of the second set proceeds in exactly the same 
fashion. The last sentence then follows from the previous ones by Corollaries 4.9 and 5.7. 

The fact that T?99) .Jp) and Tf2)2) ~(p) are equal follows from Proposition 2.7. Corol- 
lary 4.9 says that 5(2.2)~(p) is a free rank one module over 1722> (p). Furthermore, 
Proposition 7.3 implies that the operators Tni,„2 with (nj,p) = 1 commute with Hecke 
operators associated to double cosets of GL2(A°°) x GL2(A°°) generated by element of 
GL2(ZP) x GL2(Zp). But if R is a commutative ring and M a free rank one i?-module then 
the only Ä-module endomorphisms of M are given by multiplication by an element of R. 
Thus, those extra operators are contained in T?2 2* ^(p), so T(2,2) ~(p) = T?2 2* ^(p).        □ 

This implies that, for example, there is an expression for Tp.p,i in terms of the operators 
TniM2 with n\ = no (mod p) and (ni,p) = 1 as operators on 5(2.2)(r~,e(p)); it would be 
interesting to find a natural such expression. In the rest of this Section, we shall present some 
general calculations that lead us towards methods for calculating the spaces 5(2,2)(r~,£(p)); 
in the next Section, we shall give some explicit constructions of forms. t£ 

Since 

5(2!2)(ri.e(p)) = (S2(TW(P)) ® 52(r„(p)))SL^z\ 

to understand 5(2)2)(r~)£(p)) we should understand the representation theory of SL2(Z/j>Z) 
on 52(ru)(p)). Since (~Q ^) acts trivially on 52(r„j(p)), we can look at the representation 
theory of PSL2(FP) instead. We shall start by considering arbitrary weights and levels, and 
adding the assumptions of weight 2 and level p as it becomes convenient. 

The basic fact about representations of groups on spaces of cusp forms is the Strong 
Multiplicity One Theorem. This tells us how to pick out the irreducible representations 
of GL2(A°°) that are contained in 5t(C): they are just the Hecke eigenspaces. Tak- 
ing GL2(Z/./VZ)-invariants, this breaks up Sk{U(N)) into smaller subrepresentations of 
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GL2(Z/./VZ). (Of course, these smaller subrepresentations may not be irreducible as repre- 
sentations of GL2(Z/iVZ).) To apply this, we need to relate Sk{U(N)) and its eigenspaces 
to spaces that we understand better. 

-l 

First we recall that [' j    T,X(N)( ) C Ti(N2).  This allows us to pass from 

forms on XW(N) to forms on A'i(A"2): the image of Sk(Tw(N)) is the direct sum of the 
spaces Sk(To{N2).x) where x ls a character on (Z/NZ)*. A form / = YlcmQm, where 
q = e

2x\/-iz/N5 gets sent to a form with the same Fourier expansion except that q is now equal 
to ^J-^2-. Furthermore, if xj) is a character on (Z/NZ)* then the form /^, which is defined 
to have Fourier expansion ^cmip(m)qrn, is still a form in Sk(Tw(N)), by Shimura [14], 
Proposition 3.64. 

We now turn to producing forms contained in Sk(U(N)). A form f G Sk(U(N)) is a? 

function from fj x GL2(A
DC) to C with those properties listed in Section 7: it then follows 

easily that if, for e G (Z/NZ)*. we define fe by setting fe(z) — f(z,ge) (where ge is a matrix 
in GL2(Z) that is congruent to (f~' °) mod N) then each of the f€'s is a form in Sk(Tw(N)). 
By the Strong Approximation Theorem, a choice of such fe's determines f uniquely. Thus, 
we can think of forms on Sk(U(N)) as <j)(N)-tuples of forms on Sk(Tw(N)). 

This allows us to determine the Hecke eigenspaces in Sk(U(N)). The dimension of 
Sk(U(N)) is (f)(N) times the dimension of Sk(Fw(N)), so the hope is that each eigenform 
on Sk(Tw(N)) will somehow give us o(N) different eigenforms on Sk(U(N)). This is indeed 
what happens, as we shall see in Proposition 9.4: 

Lemma 9.2. Let f be an element of Sk(U(N)) and let q be a prime not dividing N. Then, 
for all e E (Z/NZ)*, (Tqf)( = Tq(ftq) and (5,f)e = Sq(f(q?). 

Proof. This follows from tracing through the definitions; alternately one can use the mod- 
ular interpretation of points on X(N) and Hecke operators together with the fact that if 
■K : E -¥ E' is an isogeny of degree N then (irx. ny)E' = (x, y)7^, where (, )E denotes the Weil 
pairing. □ 

Corollary 9.3. Let g e Sk(Tw(N)) be an eigenform, with eigenvalues {aq,x(q)} (for Tq 

and Sq respectively, as q varies over primes not dividing N). Let tp be a character of 
(Z/NZ)*. Then the form f(g,ip) € Sk(U(N)) defined by f{g,ip)e = i>(e)g is an eigenform 
with eigenvalues {ij>(q)aq.il;'2(q)x(q)}- 

Proof. Write f for f(g,ip). By the Lemma, 

(T,f)e = Tq%q) 

- Tq(ip(eq)g) 

= ip(q)ip(e)aqg 

The calculation for Sq proceeds in exactly the same manner. D 
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This allows us to produce a basis of eigenforms for Sk{U{N)) in terms of a basis of 
eigenforms for Sk(Tw(N)): 

Proposition 9.4. Let {gj} be a basis of eigenforms for Sk{Tw(N)). Then the set of forms 
{f(gj,ip)}, as gj varies over elements of the basis and ip varies over characters of (Z/NZ)*, 
give a basis of eigenforms for Sk{U{N)). Every set {aq,x{q)} of eigenvalues for Tq and 
Sq (as q runs over primes not dividing N) that occurs in Sk{U{N)) occurs in Sk(Tw(N)). 
A basis for the set of eigenforms in Sk{U(N)) with eigenvalues {aq,x(q)} is given by tak- 
ing the forms f(g,ip) where vb varies over the characters of (Z/NZ)* and where, once tp 
is fixed, g varies over a basis for those eigenforms in Sk(Tw(N)) which have eigenvalues 

{a^-Hq),x(Q)^-2(Q)}- 

Proof. Assume that we have an expression of linear dependence involving the forms f(pj,^)f 
Looking at the first coordinate, the fact that the forms {gj} form a basis for Sk(Tw(N)) 
implies that we can assume that our relation involves only forms f (g, ip) for some fixed form 
g. But those forms are linearly independent since characters are linearly independent. This 
gives us (f>(N) ■ dimSk{Tw(N)) forms; but that's the dimension of Sk(U(N)), so those forms 
give a basis for Sk{U(N)) that consists of eigenforms. 

Every set of eigenvalues on Sk{U(N)) is therefore of the form {tp(q)aq.ip2{q)x(q)}, where 
{aq, x{q)} is the set of eigenvalues of a form g € Sk{Tw(N)), by Corollary 9.3. But those are 
the eigenvalues of g^, which is also an eigenform in Sk{Tw(N)). The last statement of the 
Proposition follows in a similarly direct manner from the first paragraph of the proof and 
Corollary 9.3. □ 

To restate the last sentence of the above Proposition: assume that g e Sk(Tw{N)) is a 
newform with eigenvalues {ap,x(p)}- A basis for the eigenforms in Sk{U{N)) with those 
eigenvalues is given by the forms f(g^-i.ip) together with the forms f(h.-ip) where h runs 
over oldforms with the same eigenvalues as g^-\. 

Let us now fix k = 2 and N = p prime. We may assume that p > 5, since S2(Tw(p)) is zero 
otherwise. Pick a set A = {aq,x{q)} of eigenvalues. Let g G 52(riu(p)) be a newform with 
those eigenvalues; we wish to calculate the dimension of the space 5,4 of forms in S2(U(p)) 
with eigenvalues A. For each character ip, we can produce an element of SA all of whose 
components are multiples of g$-v, this gives us (p- 1) forms. Furthermore, when g^-\ is an 
oldform, we can produce extra forms. Since S2(r(l)) is zero, we can produce at most one 
extra form for each ip this way: this happens when the eigenvalues {aqip~l{q),x(q)'4'~2{q)} 
occur in 52(ri(p)). 

For how many VJ does an extra form arise in this way? By the Strong Multiplicity 
one theorem, studying SA reduces to the study of irreducible representations of GL2(A°°) 
and their [/(p)-invariants. Factoring those representations, we have to study irreducible 
representations of GL2(Qg) and their !7(p)g-invariants. If q ^ p then U(p)q = GL2(Zg); 
since the space of GL2(Zg) invariants of an irreducible representation of GL2(Q9) is either 
zero- or one-dimensional, we can therefore concentrate on the irreducible representations of 
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GL2(QP). and in particular calculating the dimension of their t/(p)p-invariants. where 

U(p)p = LeGL2(Zp g=[Q    l)    (modp)|>. 

A description of the irreducible representations of GL^Qq) is given in Diamond and Im, 
Section 11.2; their classification breaks them up into principal series, special, and supercus- 
pidal representations. From the description of principal series representations given there, 
one easily calculates that the space of £/(p)p-invariants of a principal series representation is 
either zero- or (p-f-l)-dimensional and that the space of invariants of a special representation 
is either zero- or p-dimensional. Furthermore, Diamond and Im state that the conductor of 
a supercuspidal representation is at least p2, which means that no oldforms can occur among 
the gv-\ 's, so by the discussion in the previous paragraph, the dimension of the space of 
invariants must be (p — l)-dimensional. Thus, we have two, one, or no extra dimensions of 
oldforms arising in the principal series, special, and supercuspidal cases, respectively. 

Let us now turn towards the space S2(Tw(p)). The group PSL2(Fp) acts on this space; 
we wish to determine its irreducible representations. Since this action is not given adeli- 
cally. we can't just apply the theory of irreducible GL2(A°°)-representations and the Strong 
Multiplicity One Theorem to get the answer. However, we can use the adelic action to get 
information about this representation as follows: let g be an element of S2(Tw{p)) and let 
f be an element of S2(£^(p)) such that fj = g. Let 7 be an element of PSL2(Fp) and let 7 
be an element of GL2(Zp) projecting to it. Then 7 sends g to (7715)i, as can be seen by 
tracing through the definitions. (Note that we need to make the action contravariant, since 
the action g t-> <?|7 is; thus, it isn't surprising that we have to act by 7^'.) In particular, 
we get representations of PSL9(Fp) on S^r^p)) by projecting the representations given in 
the previous paragraphs down to their first coordinate. 

The map from S2{U(p)) to S2{Tw(p)) sending f to fi is injective unless there is a ip such 
that g = g^, by Proposition 9.4. i.e. unless g is a CM-form. in which case all of the forms 
in the representation are CM-forms, and the dimension of the representation in S2{Tw{p)) 
is half of the dimension of the representation in S2(U(p)). Thus, we have decomposed 
S2{Fw(p)) as a direct sum of representations that are either of dimension p - 1, p, p + 1, 
(p-l)/2,or(p + l)/2. 

These representations may not be irreducible, however. Most of the time, they do turn 
out to be irreducible; we can see this by looking at the character table of PSL2(Fp). The 
dimensions of the irreducible representations of PSL2(Fp) are 1, p — 1, p, p + 1, and either 
(p - l)/2 (if p = 3 (mod 4)) or (p + l)/2 (if p = 1 (mod 4)). Furthermore, the only one- 
dimensional representation of PSL2(Fp) is the trivial one, which doesn't occur in S2(Tw{p)) 
(since that would be equivalent to having a form that is invariant under PSL2(Fp), i.e. 
a form in 52(r(l))). There are no 2-dimensional representations, either, so by comparing 
dimensions, we see that the representations that we have constructed above are either trivial 
or the direct sum of two representations of dimension (p — l)/2 or (p + l)/2. 
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To make the situation more concrete, we first consider the case where p 
In this case, the character table of PSL2(Fp) is 

1 (mod 4). 

(I 0) 
Uli (oi) (1 u>) 

VOW (oA) 
( x wy\ 
\ y  x ) 

u 1 1 1 1 1 

V p 0 0 1 -1 

wa p + l 1 1 a(x) + a(x_1) 0 

XB p-l -1 -1 0 -(ß(0 + ßttp)) 
w p+l 

2 
l+v/P 

2 
l-v/P 

2 
Qs,(l)+Qs,(l

_1) 
2 0 

W" p+l 
2 

I-VP 
2 

1+v/P 
2 

a3q{x)+a3q{x 
l) 

2 0 

This is in Fulton and Harris [4], Section 5.2; w is a non-square element of Fp, C, —x -Vyi/ofr 
a is a character of Fp whose square isn't the identity, ß is a character of the elements of 
norm one in F*2, and asq is the non-identity character of Fp whose square is the identity. 

If two irreducible representations R\ and _R2 both occur in 52(rw(p)), we want to see how 
many forms they contribute to S(2,2)(r~ e(p)), i.e. the dimension of forms in R\ <g> (R2 ° #e) 
that are fixed under PSL2(FP). Let Xi be the character of Rn then we need to calculate 
(Xi ® (X2 ° Oe), 1) = (xi»X2 °Qe)- But all of the characters above are real; furthermore, they 
are invariant under composition with 0e unless the representation is W or W" and e is a 
non-square, in which case the characters of W and W" get swapped. Thus, this is almost 
always (xi,X2)) which is 1 if xi = X2 and 0 otherwise; however, if e is a non-square and 
X2 = Xw (resp. xw") then we get 1 if xi — X\V" (resp. xw) and zero otherwise. 

In particular, the only contribution to the dimension of 5(2,2) (r~,e(p)) that depends on e 
is the contribution that comes from the representations W and W" occurring in S2{Tw{p)). 
Assume that W occurs n' times and that W" occurs n" times. In that case, we see that 
those representations combine to contribute (n')2 + (n")2 to the dimension of S(2,2)(r~,e(p)) 
if e is a square and 2n'n" if e is a non-square. The difference of these two numbers is 
(n' — n")2: since —1 is a square, the dimension is maximized when e = —1, as predicted by 
Corollary 5.10. 

This is a bit misleading, however, because in this case n' and n" are equal, so,the 
dimension of 5(2,2) (r~,e(p)) 1S tne same for all e. We can see this by calculating n' and n" 
using Ligozat [11], Proposition II. 1.3.2.1: the characters of W and W" only differ in matrices 
that are conjugate to (J *), and the only place that such matrices occur in the formula 
given there is in the term £0 mod p x(( 0 1 ))> wilictl equals (p + l)/2 both for x — XW and 
X = XW- 

As a corollary, this implies that there are no CM-forms in S2{Tw{p)) for p = 1 (mod 4). 
For if there were such a form g, it would generate an irreducible representation Rg C 
S2(Tw(p)), all of whose elements would be CM-forms; there would then be a form in Rg <g> 
(Rg o Q-i) that is invariant under PSL2(Fp). But such a form would be a CM-form in 
S{2,2)(T~,-i(p)), so Theorem 6.3 would then imply that the dimension of 5,(2)2)(r~ie(p)) for 
e a non-square is strictly smaller than the dimension of 5,(22)(r~i_i(p)), contradicting our 
calculations above. 
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Let us now turn to the case where p = 3 (mod 4). The character table of PSL2(Fp) is 

then 

(1 0} 
U i > (Ä1) (SY) (n T-i) 

rx uy\ 
\y  x ) 

u 1 1 l 1 1 
V p 0 0 1 -1 
wQ p + 1 1 l a(x) + a{x~l) 0 

Xß p-l -1 -l 0 -(ß(0 + ß(Cp)) 
X' 2=1 

2 
-1+y-p -1-vZ-p 

2 0 -(/MO+/MC)) 
2 

X" 2=1 
2 

-X-V-P 
2 

-l + v/-p 
2 0 -(^(CR/MC)) 

2 

The notation is as before, but now ßsq is the unique non-trivial character of the elements of. 
norm one in F*2 whose square is trivial. 

This time, all of the characters are real except for the characters of X' and X"; and 
all are invariant under composition with 9e except for the characters of X' and X", whose 
characters get swapped. So the only contribution to the dimension of 5(2,2) (r~,f(p)) tna<; 
depends on e is that that comes from representations isomorphic to X' or X"; if they occur 
n' and n" times, respectively, then they contribute 2n'n" to the dimension of 5(2,2)(r~,e(p)) 
when e is a square and (n1)2 + (n")2 when e is a non-square. Thus, 5(2,2)(r~,e(p)) IS largest 
when e is a non-square, and when e is a square, the dimension shrinks by (n' — n") . Since 
— 1 is not a square, this again agrees with Corollary 5.10. 

This time, however, n' - n" is non-zero. We can't calculate it as easy as we calculated 
it in the previous case, because the method used there calculates the number of times a 
representation occurs plus the number of times that its complex conjugate occurs, and here 
the character is no longer totally real. Instead, we refer to Hecke [6], where he proves that 
the difference is equal to the class number h(—p) of Q{y/—p)- Thus. 

dim5(2.2)(I\:,_1(p)) - dimS,±2)(r^(p)) = h(-p)2. 

As before, this implies that there are exactly h(-p) • (p - l)/2 CM-forms contained in 
52(rw(p)); they have been constructed by Hecke in [5]. We shall review his construction in 
Section 10, and use them to write down the Hecke kernel K~(p) explicitly. We shall also 
show how to use the theory outlined in this Section to perform explicit calculations of spaces 
5(2,2)(r~,e(p)) f°r small primes. 

To recap: 

Theorem 9.5. Ifp is a prime congruent to 1 mod 4 then there are no CM-forms contained 
in S2(Tw(p)) and the Hecke kernel K~(p) is zero. Ifp > 3 is congruent to 3 mod 4 then there 
are h(—p) • (p— l)/2 CM-forms contained in S2(Tw(p)) and K~(p) has dimension {h(—p))2, 
where h(—p) is the class number of Q(\/—p). D 

The existence of those representations consisting of CM-forms (or, more precisely, the 
fact that there are h(—p) of them) is the only really interesting bit of arithmetic information 
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in S2(Tw(p)). considered as an abstract representation of PSL^Fp), for any prime p. (Of 
course, there's always lots of arithmetic information contained in the cusp forms themselves, 
just not in the space considered solely as a representation.) To see this, note that for any 
irreducible representation V of PSL2(Fp), if we write ny to refer to the multiplicity of V in 
£2(rV(p)), then we can easily calculate ny + riy, where V is the complex conjugate of V, 
using Ligozat [11]. Proposition III.1.3.2.1, as mentioned above. The answer turns out to be 
a polynomial in p (essentially; the actual polynomial that you get depends on the value of 
p (mod 24)). However. V = V unless V equals X' or X". Thus, the only delicate question 
here is finding nx> and nx"; or equivalently, to find nx> — nx" > since nx< + nx" is easy to 
determine. 

10    Examples 

X,,-i(7) 

The first X~>e(p) to have a non-zero (2,2)-cusp form is Jf~>_i(7), as can be seen by looking 
at Table 1 in Kani and Schanz [8] (and using Corollary 2.3 above); in fact, we see that 
dimS(2,2)(r~,-i(7)) = 1. We can explicitly determine a non-zero form in this space as 
follows: 

Conjugating IV.(7) by (Q ?), we can consider Xw(7) to lie between the curves XQ(49) 

and Xi(49). The former is an elliptic curve (after choosing a base point); its L-series gives 
rise to a weight two cusp form 

f(z) = ]T cmqm 

m>0 

on Xo(49) and Xw(7). (Here, q = e27rv^-2 if we are thinking of / as a form on Xo(49) and 
q = £--Ks/-\zji if we are thinking of / as a form on ^(7).) If x is a non-trivial character on 
(Z/7Z)* such that \\-\) = 1 then the functions 

fx(z) = J2 CmX(m)qm 

m>0 •     ■■ . <iw.'i- 

and 

fx2(z)=Y,cmX2(m)qm 

m>0 

are also modular forms in S2(TW(7)), by Shimura [14], Proposition 3.64; since the latter 
space is three-dimensional, {/, fx,fx

2} forms a basis for it.   For n € (Z/7Z)*, we have 

/xL = X2{a)fx 
and /x2l<ra = X(a)/X2- 

To produce an element of 5(2)2)(r~,-i(7)), we have to find aform contained in S2(TW(7))<8 
5,2(rw(7)) that is fixed by PSI^Ff) (acting on the second factor via 0_i). For our form to 
be fixed by the matrices (aa, cra), it has to be of the form 

ao • / ® / + a\ ■ fx ® /x2 + a2 • fx2 ® fx. 
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And for our form to be fixed by the matrix ((l0 ^-(o }))• we must have ao - ai = a2- 

(We shall carry out this argument more carefully in the proof of Theorem 10.1.) However, 
those constraints leave us with only a one-dimensional space of possible cusp forms, and 
since S(2,2)(r~ _i(7)) is non-empty, we see that it must be generated by the form 

9=l(f®f-fx®fx2+fx2®fx)= E cmCm2qflq^\ 
mi=m2(raod 7) 

where the Cj's are the coefficients of / as above. 
Now that we've got our form g in hand, we'd like to relate it to some of our general 

theorems about forms in Sjt(r~ £(iV)). Note that g has lots of Fourier coefficients that are 
zero: not only is cmi,m2(g) zero unless mi = m2 (mod 7), but it's also zero unless the mj's 
are squares mod 7. This follows from the fact that the elliptic curve X0(49) has complex 
multiplication by Q(\/-7)- By Proposition 6.1,-our form is therefore in K~(7); indeed, 
5(2,2) (r~,i (7)) is trivial. 

X~-i(p) for p = 3 (mod 4) 

The above may look like a general recipe for producing forms on A'~ e(/>) out of forms on 
Xo{p2), but it isn't. To see why, note that the transition involved two steps: matching 
up characters, which involved checking invariance under the matrices {oa,Oa)-, and making 
sure that certain Fourier coefficients were zero, which involved checking invariance under 
the matrices ((0 i )■ (o 1))• Tnus- we checked that our putative form is invariant under the 
subgroup B{p) of upper-triangular matrices, not all of PSL2(Fp). The reason why we could 
get away with that above was that we knew a lot about S2(r,r(7)) and that the dimension 
of5(2>2)(r~_1(7))isl. 

Fortunately, all is not lost for more general p. To see why, we have to look at the equation 

%2)(r~ £(p)) = (S2(rw(p)) ® s2(ru,(p)))PSL2(F') 

more closely. Let p\ and p2 be irreducible representations occurring in S2(ri(;(p)), and let Xi 
be the character of pt. Then the representation pi<8>(p2°#e) occurs in S2(Tu!(p))<S>S2(Ti'w(p)); 
the dimension of the space of elements in it fixed by PSL2(Fp) is just 

(Xl • (X2 ° ef), lpSL2(Fp))PSL2(Fp) = <Xl,X2 ° ^)PSL2(FP 

Since we assumed that the p;'s were irreducible, this equals one if xi = X2 °#e and zero 
otherwise. 

Assume that it is in fact the case that xi = X2 ° Qe■ If Pi is also irreducible considered 
as a representation of B(p), then we shall also have 

<Xi • (X2 0Ö£),lß(p))        = (xi,X2o9e)B(p) = 1. 
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But this says that there's only a one-dimensional space of vectors in pi ® p2 that is fixed by 
B(p), and since there is also a one-dimensional space of vectors in p\ <g> pi that is fixed by 
PSL<2(Fp), they must be the same space. Thus, under the hypothesis that our representation 
is irreducible when considered as a representation of B(p), we can test to see whether an 
element of p\ ®pi is a cusp form on X~^e(p) simply by making sure that it is invariant under 
(an,an) and ((J \), (^)). 

To make this concrete, assume that p is congruent to 3 (mod 4) but not equal to 3 and 
that e = — 1. The character table for PSL2(Fp) is given in Section 9; checking the non-trivial 
characters listed there, we see that X' and X" remain irreducible when restricted to B(p). 
Thus, if we can produce representations isomorphic to X' or X" in S2(Tw{p)), we'll be able 
to explicitly write down forms in 5(2,2)(r~,-i(p)). We saw that there should be h(—p) such 
representations coming from CM-fbrms; they would be good ones to look for.      "- ff^rijis« 

Fortunately, those representations are produced in Hecke [5]. They are defined as follows: 
let I be an integral ideal in Q{y/—p) with norm A and let p be an element of I. We define 
a theta series as follows: 

6B(z;p,I,y/=p)= Y, H^lZ*, 
tie I 

H=p(mod Is/—p) 

where p is the complex conjugate of p. We easily verify the following facts: for pi = p2 
(mod /V^p), 

0H{z;p\.I.s/=p) = 9H{z;p2-I-V-p)- 

for all p, /, we have 

9H(z; -p. I. v/=p) = -6H{z; p. I. v/^p): 

and if A is an element of K such that XI is also an integral ideal then 

6H(z;Xp,XI,V:::P):=^H{z;p,I,y/:::p). ■ .m-l. 

Letting Vj be the vector space generated by the functions 0H(z;p,I,y/—p) for p € /, the 
above shows that Vj only depends on the ideal class of I and that it is generated by setting 
p = ja where a is a fixed element of I\Iy/^p and j is an integer with 1 < j' < (p — l)/2. 

By Hecke [5], Satz 8, these 0#'s are in fact modular functions of weight 2 on Tw(p). By 
Hecke [5] §4, Formulas I and II, the spaces V} are preserved by the operations z i-> z 4-1 and 
z i-)- —1/z; since the matrices (J {) and (° ~Q ) generate PSL2(Fp), this implies that Vj is a 
representation of PSL2(Fp). One checks that the representation is non-zero and that it is in 
fact an X' by means of Hecke [5], Satz 7. This gives us our desired h(—p) different copies of 
A". 

Now that we have our representations, we follow the same program as in the X~i_i(7) 
case: 
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Theorem 10.1. Let p be a prime congruent to 3 mod Jt. For each ideal class of Qiv^), 
fix an integral ideal I in that class and an element a/ of I that's not contained in Iyf^p. 

Let 

fl=      Y,     0„(z:a(-]a,J,s/^) 
ae(Z/pzy ^P' 

have the Fourier expansion 

fI(z) = Y/a.mqm, 
m>0 

where q = e
2ns^z^p. If I\ and I2 are (not necessarily distinct) ideal classes then the function- 

r l \ V"^ „ „mi „mi 
flul2{zuZ2)= 2^ Cium1Ci2im2ql   q2   ■ 

mi=m2(modp) 

is an element of 5(2,2) (r~ ,-i(p)) contained in K~{p); furthermore, the fiui7's give a basis 
for Ä"~(p) as I\ and Io vary over the ideal classes o/Q(v/-p)- 

Proof. First, we verify that the forms // are indeed CM-forms. By definition. 

cm{BH{z:p.L v^=p)) = ]T 
fiel 

^=p(rnod/N/=p) 

where A is the norm of I But pjl is a square mod p for all p in the ring of integers of 
Q(%/=p), as is A, so cm is zero unless m is a square mod p. Thus, every element of Vj 
is invariant under twisting by the quadratic character of (Z/pZ)*. hence a CM-form. We 
have therefore produced h{-p) different irreducible representations consisting of CM-forms; 
Theorem 9.5 shows that those are all such representations. 

By the above discussion and the discussion in Section 9, a basis for K~{p) is therefore 
given by picking a non-zero element of Vh ® Vh invariant under PSL2(Fp) for each pair 
{Ii,h). By the irreducibility of these representations under B(p), to check whether or not 
a form is invariant under PSL2(Fp) it's enough to check whether or not it is invariant under 
the matrices a^ (for (d,p) = 1) and (J }). 

First, pick an ideal class I. By Hecke [5], Satz 7, we have 

0H{z\p,I,y/=p)\ad =^(^O(HP»
/
.\/

Z
P) 

where ad = 1 (mod p). Therefore, the form // defined in the statement of the Theorem is 
indeed invariant under the matrices o^. If \ is a character of (Z/pZ)*. let 

fl,x = XI X{m)ci,mqm- 
m>0 
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This is also in Vf. 

ae(Z/pZ)* VP/ 

(The point of that formula is that we can pull out the Fourier coefficients of // whose indices 
are congruent to some fixed element of (Z/pZ)* by taking a suitable linear combination of 
the forms fi\fn,y, combining the resulting forms appropriately gives us fitX.) Shimura [14], 

U i) 
Proposition 3.64 implies that fi,x\ad = X2{d)fl,x- Thus, fi,x 

and fi,x' are linearly indepen- 
dent unless x2 = (x')2! ^ we restrict x by assuming that x(—1) = 1 then the forms //>x are 
linearly independent, and hence form a basis for Vj. Thus, the elements of Vrx ® Vj2 that 
are invariant under the matrices ad are the linear combinations of the forms //liX ® fi2tX-i 
as x varies over the characters of (Z/pZ)*/{±l}. 

There is then exactly one linear combination of those forms which is invariant under the 
matrix (J \). Forms invariant under that matrix are characterized by Proposition 2.4: they 
have cmi,m2 = 0 unless mi = mi (mod p). Let rp be a primitive character of (Z/pZ)*/{±l}, 
and define 

EJzl 

2    ^ 

i=i 

Then 

2     ^ 
Cmi.m2\fh,h) — 7 / ., cm\ \fluipj )c™2 {fhrf-J ) 

P j = l 
9 

-^7/;J(?7i1)V'_:'(m2)cmii/1cm2i/2 

P J 

 T I y)^'(ml/m2)     cmi,hcm2,l2- 
p_1 \i        / 

But i/> is a character of order (p —1)/2, so £\- tpi {m\ / mi) is zero unless mi and 7712 project to 
the same element of (Z/pZ)*/{±l}, i.e. unless mi = ±7712; in that case, the sum is (p-l)/2. 
Since —1 is a non-square and since c^.^ = 0 if mj is a non-square mod p, cmij1cm2j2 is 
zero if mi = — mi (modp), so in fact the sum is zero unless mi = mi (modp). Thus, 
the fiui2 that we have defined here is the same as the one defined in the statement of the 
Theorem, and is invariant under the matrices <?</ and (J \). It is therefore an element of 
%2)(r~-i(p)) as desired. D 
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.Y~-i(ll) 

The next prime level to consider is level 11. Table 1 in Kani and Schanz [8] and Corollary 2.3 
show us that 

.. . J3    if-e is a square 

\Z    otherwise. 

By Corollary 5.9. to understand the structure of S(2]2)(r~e(ll)) as a T(22)|(:(ll)-module, it's 
enough to give a basis of eigenforms for S(2.2)(r~-i (11)) and to say which of those eigenforms 
are in if~(ll). The latter question is answered by Theorem 10.1; since /i(-ll) = 1, K~(ll) 
is one-dimensional, agreeing with our dimension count above. The rest of this section will 
be devoted to finding the other two eigenforms contained in 5(2.2)(r~,-i(ll)). 

The first step is to have a basis of eigenforms for S2(1^(11)) and to understand the latter 
as a PSL2(Fn ^representation. Fortunately, Ligorat [11] provides a fairly complete answer 
to this question. The space 52(rw(ll)) is 26-dimensional and decomposes into a sum of 
three irreducible representations: an 11-dimensional one (isomorphic to the representation 
we called V in Section 9), a 10-dimensional one (isomorphic to X0 where ß is a character of 
order three), and a 5-dimonsional one (isomorphic to X'). The 5-dimensional one is made 
up of the CM-forms in S2(ru,(ll)); we have discussed that in the previous example. There 
is also one PSL2(Fu)-invariant vector in V ® (V o 9_l) and one in Xg ® (Xß o 0_i); our goal 
is to determine those vectors, which are the eigenforms that we are looking for. 

Let fi{z) = ri2{z/ll)r]2{z) and let f2(z) = T]{Z/11)T}
2
{Z)T](UZ). If we let 

9i(z) = MUz) 

92{z) = fi(z) - MUz) 

9i(z) = -2/2U) - 3r2/2(z) - 2T4/2(z) - T8f2(z) 

g4(z) = 2f2(z) - T.Mz) - Tsh(z) 

9s(z) = -2f2(z) + TAj2{z) - Tsf2(z) 

then the forms gi are all eigenforms with trivial character; if %/) is the quadratic character 
of Ffj then g2^ = 33, g^ = g5, and vice-versa. (This is in the first part of Ligozat [11]; 
we have chosen our g2 so that ci}i(g2) = 0.) Furthermore, all eigenspaces in 52(rw(ll)) are 
one-dimensional except for the one spanned by gi and g2. Thus, if \ is a primitive character 
of Fj*! then the 11-dimensional representation is spanned by g\ and by the g2xj's and the 
10-dimensional representation is spanned by the <74iX's. 

As in the previous example, we can easily determine those forms in V <g> (V o 0-i) that 
are invariant under the Borel subgroup 5(11) of upper-triangular matrices fairly easily. 
Unfortunately, that space is no longer one-dimensional: it's three-dimensional, with a basis 
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given by the following forms: 

Äl = = gi®gi 

l  10 

= TnS^2^ h2-- ® Ö2,X-J 

3 = 1 

l  10 

h3 = <S> 32,X'5-J • 

3 = 1 

Thus, we have to find which linear combination of these forms is invariant under PSL2(Fn) 
or, equivalently (given that they're invariant under B(ll)), invariant under the matrix 
fO-l\ " ■ ''■"'■''    ' ■'•   -  "■■'"-■-•J$f?'w 
u o ;■ _ ■ 

Let hi be the form that we are looking for, and let h G S* ~(11) be an eigenform such 
that /14 = h_i. By Proposition 4.4, Eh is also an-eigenform; but 

hA=     ]T     cmi>ma(Eh)9;ni^. 
"ll,T7l2>0 

mi=m2(modll) 

In other words, the projection of h$ into S^r^ll)) ® S2(r^ (11)) is given by taking one of 
the eigenforms in the latter space and stripping away the Fourier coefficients whose indices 
aren't congruent mod 11. However, no linear combination of /12 and h% arises from an 
eigenform in that manner other than hi and /13 themselves. Thus, either h\ = c • h\ + hi or 
hi = c • h\ + /13 for some constant c. (We have to allow an arbitrary multiple of hi because 
hi is zero as an element of S^r^ll)) <g> S^r^ll)).) We shall therefore test such forms to 
see whether they are invariant under (° ~0

l). 
The basic fact that we shall use is the transformation law for 77 under that matrix: for 

all z £ fi. 

Tfi-I/Z)  = {-izf'^z), 

where we take the branch of the square root that is positive on positive real numbers. 
(This is Apostol [1], Theorem 3.1.) Using this, we see that /i|/o -i\(z) = —H/i(Hz) and 

u oj 
that /2I/0 -n(2) = —/2(z).  Since the action of (? ~Q) and the action of Hecke operators 

commute by Proposition 7.3, this shows that (° ~J ) sends g\ to —yf<7i — ji92, it sends g% 
to —\i9i + \\92-, and it sends 53, 34, and g$ to their negatives. 

Unfortunately, it's not so easy to see what (° ~Q) does to twists of the g^s. The sav- 
ing grace is that it sends eigenforms to eigenforms and that cra{\ ~Q

1
) — (? ~o)aa-li so it 

sends eigenforms with character xk to eigenforms with characters x~k- Thus, if we diago- 
nalize ^(^(ll)) ® S,2(ru)(ll)) with respect to the action of the matrices aa <g> aa> then it's 
sufficient to show that there's only one choice for h whose trivial component (under that 
diagonalization) is preserved by the action of (° ~J). 
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Assume first that h.\ — c ■ hi + h%. Then the trivial component of h,\ is c • g\ ® g\ + 
(1/10)(52 ® <?3 + 93 ® .92): which transforms under (° ~0

l) to 

^ (Si + 92) ® (.91 + ff2) + 7^(1209i - 92) ® .93 + ^93 ® (120.91 - g2). 

This includes terms of the form g\ <%> g% and g$ (g> g\, which didn't occur in the original trivial 
component, so it's impossible for that to be fixed by the action of (j ~0

l). 
Now assume that h.{ = c-h\ +ho- The trivial component is now c • g\ ® g\ + (1/10)(52 <8> 

.92 + 93 ® 93); this transforms to 

c 1 1 
j2i (91 + 92) ® (91 + 92) + T^ö(120^i ~ 02) ® (12°2i - »a) + lö?3 ® ö3 

c     1440 c      12 c      12 c        1 1 
= (m+r^)5l^1+(m~m)5l®'92+(i^ 
This is our original trivial component iff c = 12; thus, the normalized eigenform arising from 
the 11-dimensional representation is 

1    10 

hA = 1201 ®0i -t- JQX^U'' ^</2„X-^ 

We now turn to finding the normalized eigenform h$ that arises from the 10-dimensional 
representation. If we take invariants under 0(11). we find a two-dimensional subspace, and 
we see as above that /15 is one of the following forms: 

1    10 

/?'6 = YQ12
9

^X
J
 ®9A.CM-J 

1    10 

J'=I 

Unfortunately, we can't eliminate either of the forms by looking at the trivial component of 
the representation (under its diagonalization with respect to the matrices aa <8> cr0»), since 
those components turn out to be invariant under the action of (° ~0

l). Thus, we look at the 
X2 ® x_2_comPonent instead. The form <?4,x|/o -i\ must be an eigenform with character Xi 

W 0 ) 
so it is either a multiple of gi x-i or a multiple of gA x-6. Calculations using GP/PARI show 
that it equals c- gix-\ for some constant c.   Similarly, g4 xe|/o -i\ = c' ' 94 x~6 ^or some 

constant c' 7^ c.3 

3While these numerical calculations are only approximate, and thus they give us only an approximate 
value for c and c . the approximations are good enough to make it clear that g4\\ro -i\ is a multiple of 

(1  0 / 
<?4 x-i rather than of gA x-s and that c ^ c'. It presumably wouldn't be at all difficult to prove those facts 
rigorously using appropriate error estimates. 
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The x 2 ® x2-comPonent °f ^6 is 

1 / 

This gets sent under (° ~Q
l) to 

1 A 1 / N       1 / 
YQ(-54,X ® c54.x-

1 + ^9i,x
6 ® c34or6) = io^4^ ® 94-x_1 + 54,x6 ® 54,x"6)- 

But this is the x2 ® x~2"comPonent °f ^6- The x~2 ® x2_comPonent °f ^7 is 

1 
TJiiSAx-1 ®9*,X* +54,x-6 ®54,x)- 10 

This gets sent under (° Q
1
 ) to 

1 /I / 1 1 ,c' c 

— (-54,x ® c 54.x-1 + ^54,x6 ® c54,x-0 = Yö(754,x ®^ä-
X
 + ^54,x6 ® 94,x-6)- 

Since c ^ c', this is not equal to the x2 ® x_2-comPonent °f ^7-   Thus, the normalized 
eigenform h$ that we are looking for is hß. 

Finally, we note that /14 is an eigenform for Ti^n.i with eigenvalue 12: since Tn^^i 
commutes with the action of operators in T=(ll) by Proposition 7.3, Tn^i^h* must be a 
T=(ll)-eigenform with the same eigenvalues as /14, hence a multiple of /14. Proposition 8.5 
shows that its leading coefficient must be en.11(^4) = 12: since /14 is normalized, it is 
therefore an eigenform for Tu,11,1 with eigenvalue 12. The fact that en.11(^5) = 0 similarly 
shows that Tnjij/15 = 0: we also see that TPtPtifi1j2 = 0 for the forms fiui2 constructed in 
Theorem 10.1. 
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